Смекни!
smekni.com

Открытия положившие начало науке о Вселенной (стр. 5 из 6)

Дипольная анизотропия реликтового фона была реально обнаружена с помощью радиометров, вынесенных за пределы земной атмосферы (чтобы она не мешала наблюдениям) на высотных самолетах и аэростатах. Оказалось, что в направлении на созвездие Льва имеется сдвиг в сторону более коротких волн, а в противоположном направлении — в сторону длинных. Разница составляла приблизительно две десятых процента, и, пересчитав ее на скорость по эффекту Доплера, наблюдатели нашли, что скорость Земли относительно реликтового фона составляет приблизительно триста километров в секунду. Это одна тысячная скорости света, т. е. одна десятая процента от нее; так и должно быть, ибо относительный сдвиг длины волны равен — в каждом из обоих направлений — отношению скорости движения к скорости света.. Земля движется в направлении на созвездие Льва со скоростью приблизительно в 300 км/сек относительно реликтового фона.

Этот фон служит идеально устроенной и очень удобной системой отсчета для измерения движений различных тел в космологии.


2ВСЕМИРНОЕ АНТИТЯГОТЕНИЕ

2.1 Гипотеза Эйнштейна

С конца 1920-х годов гипотеза эйнштейновской космологической постоянной сошла, казалось, со сцены. Действительно, раз мир не статичен и расширяется, в ней уже просто нет нужды. Так считал Эйнштейн, так думали и другие теоретики.

И, тем не менее, интерес к гипотезе Эйнштейна не пропадал совсем. Десятилетие за десятилетием, начиная с работ В. де Ситгера и Ж. Леметра, складывалось понимание того, что же, в сущности, стоит за этой новой константой природы.

Постепенно стало ясно, что в своей первой космологической работе Эйнштейн предложил гипотезу о том, что наряду с обычным веществом, все частицы которого — протоны, электроны, нейтроны и т. д. — испытывают взаимное притяжение, в мире существует и совсем необычная среда, создающая не притяжение, а антипритяжение, отталкивание. Эта неизвестная до того — ни в теории, ни в эксперименте — среда действует на обычное вещество Вселенной и способна уменьшить или даже вовсе компенсировать взаимное притяжение его частиц, а то и пересилить его.

Антигравитируюшая среда представлена в модифицированных уравнениях всего одной константой - эйнштейновской космологической постоянной Λ. Величина космологической постоянной не выводится из какой-либо фундаментальной теории, а подлежит наблюдательному определению. В модели Эйнштейна ее значение должно быть таким, чтобы обеспечить точную компенсацию тяготения антитяготением.

Если такая компенсация имеет место, то сумма сил, приложенных к каждой частице космического вещества, оказывается равной нулю, и потому все частицы в мире могут находиться в покое. Если все частицы покоятся, Вселенная как целое, тоже лишена движения — она неподвижна и статична, она не меняется со временем. Именно это состояние баланса сил и описывается, по сути, космологией Эйнштейна.

Так из, казалось бы, вынужденного предположения о новой постоянной природы родилась грандиозная гипотеза всемирного антитяготения.

Ни в первой своей космологической работе, ни позднее Эйнштейн не говорит об ангитяготении, вакууме, темной энергии и т. п. Но дело не в словах и названиях. Он вообще воздерживается от какой-либо физической интерпретации космологической постоянной. У него не говорится и о компенсации тяготения космического вещества за счет физического эффекта, описываемого этой постоянной.

Сейчас считается, что космологическая постоянная представляет собой количественную характеристику космического вакуума. Такая точка зрения была впервые высказана Э. Б. Глинером в 1965 г. Космический вакуум — это такое состояние космической среды, которое обладает постоянной во времени и всюду одинаковой в пространстве плотностью — и притом в любой системе отсчета. По этим свойствам вакуум принципиально отличается от всех других, обычных форм космической среды, плотность которых неоднородна в пространстве, падает со временем в ходе космологического расширения и может быть разной в разных системах отсчета.

Если оставить в стороне представление о статичности Вселенной, то гипотеза Эйнштейна была в действительности предположением о существовании в мире космического вакуума. И это предположение, наконец, подтвердилось в астрономических наблюдениях.

В 1998—99 гг. две группы астрономов открыли всемирное антитяготение и космический вакуум. В работе участвовало большое число астрономов), одной группой руководили Брайан Смидт и Адам Ранее, другой — Сол Перлмуттер.

Главный смысл новейших открытий в космологии таков. В наблюдаемой Вселенной доминирует вакуум, который математически описывается эйнштейновской космологической постоянной. По плотности энергии он превосходит все «обычные» формы космического вещества вместе взятые. Вакуум создает космическое антитяготение, антигравитацию, которая управляет динамикой космологического расширения в современную эпоху.

Открытие сделано на основании изучения далеких вспышек сверхновых звезд. Из-за их исключительной яркости, сверхновые можно наблюдать на очень больших, по-настоящему космологических, расстояниях. Опуская другие детали, скажем, что использовались данные о сверхновых определенного типа (1а), которые принято считать «стандартными свечами»; их собственная светимость в максимуме блеска действительно лежит в довольно узких пределах.

Сверхновые служат для определения таких больших космологических расстояний, на которых цефеиды и другие «обычные» звезды уже не видны даже в самые крупные современные телескопы. Самые далекие сверхновые наблюдают с помощью космического телескопа, носящего имя Хаббла.

Первая группа наблюдателей, сообщившая о своих результатах в 1998 г., располагала данными о всего нескольких сверхновых нужного типа на нужных расстояниях; но уже и этого было достаточно, чтобы заметить космологический эффект в законе убывания видимого блеска с расстоянием.

В наблюдениях сверхновых непосредственно измеряются две величины: блеск звезды (т. е. энергия, приходящая от нее на Землю в единицу времени на единицу площади) и красное смещение.

Красное смешение в спектре возникает из-за общего космологического расширения. Галактика, в которой находится звезда, удаляется от нас по закону Хаббла. Поэтому все длины волн света от нее смещены. Мерой смещения служит величина:

Z = (λ – λ0 ) / λ0 ,

где λ.— длина волны регистрируемого света, λ0 — длина волны испускаемого света. Величина Z называется красным смещением.

Рисунок 2.1 – Сверхновые звезды и ускорение Вселенной: зависимость блеска звезды от красного смешения. Наблюдательные точки ложатся на верхнюю из двух теоретических кривых. Это означает, что космологическое расширение происходит с ускорением. Блеск измеряется в логарифмической шкале и возрастает на вертикальной оси сверху вниз.

Измерив блеск сверхновой и ее красное смещение, астрономы ставят соответствующую точку на графике блеск-красное смещение.

На этом графике показаны две линии, которые отображают теоретическую зависимость блеска от красного смещения. При малых Z обе линии сливаются в одну.

В этом случае связь между измеряемыми величинами очень простая — она соответствует обычному закону обратных квадратов: блеск F убывает с расстоянием R по закону:

F ~ R-2.


Так как в соответствии с эффектом Доплера Z = V/c, а по закону Хаббла V = HR, то можно получить связь между расстоянием и красным смещением для малых Z:

R = cz/H.

В результате блеск убывает с красным смещением по закону обратных квадратов (справедливо для малых Z): F ~ Z-2.

Эта зависимость и изображена совпадающими начальными участками обеих теоретических кривых на рис. 2.1. Но при не малых красных смещениях связь между расстоянием и красным смещением становится сложнее. В эту связь оказывается вовлеченной не только скорость разбегания V, но и ускорение, с которым это разбегание происходит. Теоретическая кривая для ускоряющегося расширения проходит выше, чем для замедляющегося.

А это означает, что по виду зависимости блеска от красного смещения можно определить ускоряется космологическое расширение или замедляется. Для этого нужно наблюдать побольше сверхновых на таких больших расстояниях, где две теоретические кривые различны, и смотреть, как наблюдательные точки лягут на график.

Наблюдения сверхновых звезд определенно указывают на то, что точки ложатся на верхнюю кривую. А это означает, что Вселенная расширяется с ускорением. Ускорение же может создать только космический вакуум с его антигравитацией: антигравитация стремится удалить тела друг от друга и тем самым подгоняет разлет галактик и скоплений.

По этому ускорению космологического расширения и удалось распознать космический вакуум и даже весьма точно измерить плотность его энергии. Оказалось, что плотность энергии вакуума составляет 5·10-30 г/см3, если выразить ее в единицах плотности массы. Как известно, масса и энергия связаны между собой знаменитой формулой Е= mс2. Чтобы пересчитать плотность массы на плотность энергии, нужно умножить ее на с2.

В тех же единицах г/см3 средняя плотность светящегося вещества звезд составляет — 2·10-31 г/см3, а средняя плотность темной материи — 2·10-30 г/см3. На вакуум приходится, таким образом, 67% всей энергии мира, на темное вещество - приблизительно 30%, на барионы (обычное вещество) — около 3%, а на излучение — еще раз в сто меньше.

Итак, космический вакуум — самая плотная среда во Вселенной. Плотность вакуума больше и каждой из трех других плотностей в отдельности, и их суммы. Вакуума оказалось явно больше, чем требуется для компенсации тяготения в модели Эйнштейна. При этом плотность вакуума идеально одинакова во всем мире. Он присутствует всюду и везде имеет строго одну и ту же плотность. Плотности же светящегося и темного вещества одинаковы лишь в среднем по очень большим объемам с размерами в 300 миллионов световых лет и более.