Двигатели с цилиндрической камерой сгорания: а-ОРМ-65 (1936 г.); б—РД-107 (1954—1957 гг.); 1 - внутренняя оболочка камеры; 2 - корпус; 3 - вкладыш; 4 - штуцер подачи окислителя; 5—форсунка окислителя; 6—головка; 7—форсунка горючего, 8—нить накаливания: 9— воспламеняющий состав; 10 — зажигательная шашка
2) при заданном давлении в камере сгорания они имеют меньшую толщину оболочки, что уменьшает удельный вес камеры сгорания;
3) оболочка этих камер сгорания обладает большей устойчивостью против вдавливания внутрь под воздействием на нее статического давления охлаждающей жидкости;
4) процесс сгорания топлива в них протекает более полно благодаря сравнительно хорошей турбулизации газового потока, что повышает удельный импульс двигателя на 2—3%;
5) при прочих равных условиях в этих камерах меньше теплоотдача от газов к оболочке камеры вследствие наличия около ее поверхности более толстого ламинарного слоя, ухудшающего теплоотдачу к оболочке от газов и
облегчающего этим охлаждение камеры сгорания (газовый поток сравнительно меньше обжимается поверхностью оболочки).
К основным недостаткам шарообразных камер сгорания относятся:
1) сложность конструкции и технологии изготовления, что увеличивает ее стоимость;
2)сравнительно больший диаметр камеры сгорания, что может потребовать увеличения миделя ракеты.
Шарообразные камеры сгорания обычно имеют приварную шарообразную головку. Эту форму камеры сгорания имеют двигатели большой тяги со значительной продолжительностью работы, когда объем камеры сгорания настолько велик, что становится целесообразным предкамерный распыл компонентов, а также когда выгоды от уменьшения ее веса и повышения экономичности работы за счет формы преобладают над увеличением стоимости ее изготовления.
Примером ЖРД с шарообразными камерами сгорания может служить немецкий спирто-кислородный двигатель А-4, рис.33.
У конических камер сгорания по существу вся камера является входной частью сопла. Они имеют пониженные значения Iуд по сравнению с другими типами камер и вследствие этого не применяются, представляя только исторический интерес.
Основной причиной снижения Iуд являются большие скорости продуктов сгорания в камере. Вследствие этого превращение тепловой энергии в работу расширения является менее полным, т.е. имеют место большие потери на тепловое сопротивление. Кроме того, в конических камерах зона распыливания и испарения занимает значительную часть её полного объёма; зона сгорания при этом уменьшается, что приводит к худшему сгоранию или требует увеличения полного объёма камеры.
Применение кольцевых камер сгорания в ЖРД определено использованием сопел с центральным телом. Различают цилиндрические и торовые кольцевые камеры сгорания.
Кольцевые камеры круглого сечения (торовые) целесообразно применять при разгоне газа в сопле с центральным телом до больших чисел М.
По сравнению с другими типами кольцевые камеры сгорания имеют ряд недостатков. Поверхность их значительно больше, что приводит к увеличению веса и затрудняет охлаждение камеры, особенно, «юбки» сопла. Кольцевая камера сгорания сложна в изготовлении, а для обеспечения её жесткости необходимы либо специальные наружные рёбра жесткости, либо охлаждаемые стойки, связывающие наружный контур камеры с внутренним.
Достоинствами кольцевой камеры сгорания являются: возможность регулирования модуля и направления вектора тяги, а также уменьшение вероятности возникновения вибрационного горения при разбивке камеры по окружности на ряд отдельных секций; пониженные продольные геометрические размеры, по сравнению с другими типами камер;
возможность установки в полости центрального тела ТНА или других агрегатов.
Рис.33
Камера двигателя ракеты А-4: 1—верхняя полость; 2— главный клапан горючего; 3— нижняя полость горючего 4—форкамера; 5—"упор для передачи силы тяги на раму: 6—патрубок подвода горючего 7— тор; S—нижний пояс внутреннего охлаждения, 9—внутренняя оболочка камеры; 10— внешняя оболочка камеры;
56
11, 12 - пояса внутреннего охлаждения: и—дополнительный пояс внутреннего охлаждения; 14—
верхний пояс внутреннего охлаждения
6.6. Головки камер ЖРД и их конструкция
Головка камеры двигателя является главным узлом, обеспечивающим правильную организацию смесеобразования в камере сгорания. Конструк-цияголовки должна обеспечить устойчивое горение в камере, а также способствовать плавному выходу двигателя на режим и уменьшению импульса последействия. При проектировании головки должно быть осуществлено необ-мое размещение и надежное крепление форсунок, наиболее удобный подвод компонентов к форсункам и технологически возможно более простое соединение головки с камерой сгорания.
На головке располагаются устройства для ввода в камеру топлива.
Жидкое топливо подается в камеру форсунками, а в случае применения схемы
с дожиганием газа, поступающего из ТНА, или при подаче топлива (например,
перекиси водорода) в газообразном состоянии - через специальные окна, вы-
полненные в головке. При двухкомпонентном жидком топливе головка имеет
днeполости. В двигателях с регулированием тяги путем отключения групп
форсунок эти полости могут иметь дополнительные перегородки, позволяющие
отдельно подводить топливо к различным группам форсунок.
На головке размещаются также узлы крепления двигателя, клапаны, служащие для запуска, отсечки и регулирования тяги двигателя, а в ряде случаев и антивибрационные устройства, и воспламенители.
Основным требованием к конструкции головки является обеспечение заданных условий смесеобразования и защиты стенок камеры от чрезмерного нагрева и прогара. Эти задачи, как указывалось, решаются рациональным размещением форсунок на головке, выбором производительности отдельных групп форсунок и их характеристик, а также надлежащим охлаждением двигателя. Одновременно конструкция головки должна обладать достаточной жесткостью несмотря на ослабление ее стенок большим количеством отверстий под форсунки, обеспечивать возможность подвода компонентов с минимальным гидравлическим сопротивлением и иметь надежную защиту от перегрева горячими газами.
Для наилучшего смешения компонентов на головке желательно разместить максимально возможное число форсунок. Минимальное расстояние между форсунками определяется условиями прочности стенки головки, условиями размещения в теле головки каналов для подвода компонентов, если головка не имеет общей полости компонента, и, наконец, размерами форсунки. При центробежных форсунках определяющим фактором является размер форсунки, так как жесткость головки может быть обеспечена включением корпуса форсунки в силовую схему, а подвод компонентов в большинстве случаев осуществляется из общей полости. При струйных форсунках, имеющих относительно малые размеры, минимальный шаг определяется при данном угле рас-пыла расстоянием от поверхности головки зоны соударения струй или усло-
виями подвода компонента. В выполненных конструкциях при центробежных форсунках шаг составляет 6-30 мм, а при струйных форсунках минимальный шаг может быть доведен до 3 - 4 мм.
Тот или иной способ размещения форсунок выбирается либо на основании имеющегося опыта смешения компонентов топлива данного состава, либо из чисто конструктивных соображений, включающих подвод топлива и жесткость головки.
Основными конструктивными элементами головки являются форсуночное днище и наружная стенка. В свою очередь форсуночное днище чаще бывает двухстенным и реже - одностенным. При двухстенном форсуночном днище головка в целом является трехстенной. Тогда стенку форсуночного днища, обращенную к камере сгорания, называют внутренней или огневой, а вторую средней.
Одним из основных требований, предъявляемых к конструкции головки, является обеспечение достаточной ее жесткости, а также сохранениягерме-тичности ее элементов при возможных деформациях.
Головки камер ЖРД подразделяются на плоские, шатровые, сферические, цилиндрические и вихревые, рис.34.
Плоские головки являются наиболее распространенным типом. Плоские головки камеры имеют различное конструктивное оформление.- Иногда их выполняют трехстенной конструкции с отдельными полостями для горючего и окислителя. Верхнее днище обычно имеет шаровидную форму, тогда как последние два днища — плоские, в которых монтируют форсунки. При этом: компонент топлива, используемый для охлаждения камеры, поступает в нижнюю полость головки, образуемую плоскими днищами, откуда через форсунки впрыскивается в камеру сгорания. Второй компонент топлива подается прямо в верхнюю полость головки, образуемую шарообразным верхним и плоским средним днищами, а из нее затем поступает в камеру сгорания через сквозные трубки, пересекающие плоские днища головки и заканчивающиеся форсунками. Все три днища головки камеры связаны между собой. Верхнее днище связывается со средним плоским днищем косынками различной формы, а для связи плоских днищ можно использовать точечные выштамповки или развальцовку корпуса форсунок. Так как число форсунок обычно бывает весьма большим (измеряется сотнями), то последний способ связи между собой оболочек практически оказывается также достаточно надежным.
Конструктивное оформление головки в основном зависит от выбранной формы камеры сгорания, ее диаметра, вида компонентов топлива, а также от того, какой компонент топлива используется для охлаждения камеры. Плоские головки применяются в камерах двигателей малых и средних тяг. Они наиболее удобны для цилиндрических камер сгорания благодаря конструктивной простоте и удобству расположения на них струйных и центробежных форсунок горючего и окислителя. Плоские головки в сочетании с цилиндрической камерой сгорания обеспечивают хорошую однородность поля скоростей и концентрацию компонентов топлива по поперечному сечению камеры.