- всяческое снижение необходимых габаритов сопла ракетного двигателя.
Таким образом, объединяя обе задачи, можно сказать, что при проектировании сопла ракетных двигателей основной целью является максимальное приближение процесса истечения к идеальному при минимальных габаритах сопла. Тогда сопло двигателя будет иметь минимальные потери при минимальной массе и габаритах.
В соплах реактивных двигателей потери с достаточной точностью можно разделить на следующие виды:
Потери трения. Этот вид потерь связан с трением газа о стенку. Наличие вязкого трения при течении газового потока вдоль стенки КС и сопла создает силу, стремящуюся увлечь стенку в направлении потока, т. е. создает силу, противоположную тяге.
Газодинамические потери. Этот вид потерь связан с неравномерностью поля скорости по величине и направлению на срезе сопла. Дело в том, что, рассматривая характеристики идеального или теоретического двигателя, подразумеваем одномерное течение в сопле и, следовательно, параллельное оси сопла истечение с одинаковой скоростью по всему срезу сопла. В действительности течение в соплах пространственное, близкое к его разновидности
— осесимметричному потоку, с непараллельным и неравномерным истечени
ем. Это снижает тягу по сравнению с идеальным двигателем.
Термодинамические потери. К термодинамическим процессам, которые могут оказать отрицательное влияние на тяговые свойства сопла, относят недовыделение теплоты в сопле, за счет некоторой степени неравновесности и потери теплоты за счет теплоотдачи в стенку или в систему охлаждения. Эти потери отклоняют реальный процесс от идеализированного, и поскольку в обоих случаях имеют место потери тепловой энергии при расширении, то это вызывает и соответствующие потери тяги в сопле.
Полные потери тяги в соплах. В общем случае суммарный коэффициент, отражающий все основные составляющие потери:
где (при «хорошо» спрофилированных и изготовленных соплах):
= 0,990—0,975 — коэффициент, отражающий потери тяги из-за трения, зависит главным образом от степени расширения газов в сопле и шероховатости внутренней поверхности сопла; = 0,990—0,985 — коэффициент, отражающий газодинамические потери. зависит главным образом от формы и особенностей профиля сопла; -- 0.990—0,995 — коэффициент, отражающий потери термодинамического ера, зависит главным образом от степени неадиабатичности процесса, степени расширения газов в сопле и рода топлива.В итоге, учитывая приведенные выше значения отдельных состав-
ляющих, полный коэффициент сопла равен
= 0,975— 0,940, т. ё. потеритяги в соплах составляют от 2,5 до 6,0%, рис.39. Пунктирная кривая расширя-
ет область в сторону его увеличения при применении сопел с полированной
внутренней поверхностью.
Рис.39
Примерное значение полного коэффициента профилированного сопла
в зависимости от степени расширения Рк/Pa.6.9. Схемы сопел ЖРД
Применяемые в ракетных двигателях сопла могут быть разделены на конические, профилированные, кольцевые или сопла с центральным телом.
Конические сопла. Это наиболее простая в техническом отношении схема сопла. Сверхзвуковая часть сопла выполняется в виде прямолинейного расходящегося конуса, а область критического сечения по дуге окружности. Несмотря на большие потери тяги по сравнению с профилированными, эти сопла во многих случаях используются в ракетных двигателях. Больше того, для двигателей, работающих при больших противодавлениях среды (подводных) на режимах с отрывом потока в сопле, конические сопла оказываются более предпочтительными. С достаточной степенью точностью потери тягн на
неравномерность поля скорости на срезе сопла или непараллельность истечения оцениваются соотношением:
т. е. определяются в основном непараллельностью истечения, 2
- угол конусности сопла. Для безударности входа сопла область критического сечения рекомендуется выполнять по дуге радиуса R= (1— 0,75)d*. Если положить, что кроме потерь на неравномерность потока и трения других нет, то теоретический коэффициент сопла:будет иметь экстремум при некотором угле конусности. Действительно, при увеличении угла конусности потери непараллельности растут, потери трения уменьшаются, рис.40.
Рис.40
Кривые зависимости
от угла конусности 2 для ряда значений степени расширения газов в сопле.По мере увеличения степени расширения газов, т. е. увеличения относительной площади среза
величина из-за роста потерь на трение уменьшается и её, экстремум сдвигается на большие углы конусности. Из графика следует, что оптимальные углы конусности при рк/ра=100—1000. Этим данным соответствует значение =0,978— 0,972.Профилированные сопла. Профилированные сопла в настоящее время широко распространены. Контур сверхзвуковой части выполняется по специальной образующей, которая сначала резко отклоняется от оси сопла, а затем, достигнув максимального угла отклонения в точке перегиба, плавно выравнивается к концу сопла.
Профилированные сопла обладают определенными преимуществами по сравнению с коническими:
а)при одинаковой длине будут иметь меньшие угол конусности на срезе
и потери на непараллельность;
б)при одинаковой конусности на срезе и соответственно одинаковых по
терях на непараллельность будут значительно более короткими.
Построение криволинейного контура производится по специальным схемам, основанным на свойствах сверхзвукового потока.
Независимо от схемы построения контура профилированные сопла, так же как и конические, имеют при определенных условиях экстремальное значение коэффициента сопла
Действительно, если считать что сопло имеет только потери на трение и неравномерность потока, то теоретический коэффициент = ( будет иметь максимальное значение при определенной длине сопла). В самом деле, при данной схеме профилирования с увеличением длины сопла уменьшается угол не параллельности на срезе и, следовательно, уменьшаются потери на неравномерность потока. С другой стороны, с увеличением длины сопла растут потери на трение. Отсюда произведение , так же как и при конических соплах, будет иметь где-то экстремум.Оптимальные (
профилированных сопл лежат при углах конусности на срезе порядка , соответствующие Рк/Ра- =500-1000.Кольцевые сопла. Одним из перспективных методов уменьшения габаритов двигателя является использование вместо обычных круглых сопел Лаваля кольцевых или сопел с центральным телом. В этих схемах принцип разгона газового потока до сверхзвуковой скорости остается прежним— геометрическим: дозвуковой поток разгоняется до скорости звука в сужающемся канале, а затем в расширяющемся канале достигает сверхзвуковой скорости. Разница между обычным и новым соплом состоит в том, что новая схема сопла имеет форму критического сечения не круглую, а кольцевую или щелевую.
На рис.41 представлена схема сопла с простым кольцевым критическим сечением. Контур этого сопла получается, если вращать контур обычного сопла Лаваля с осью х—х вокруг центральной оси 1-1.
Для образования кольцевой или щелевой формы критического сечения сопла, как видно из схемы, внутри сопла располагается тело вращения, называемое центральным телом.
Для сопла с центральным телом наиболее подходит торовая форма КС. В этом случае центральная часть КС и сопла (внутренняя полость центрального тела) оказывается свободной. В ней очень хорошо можно расположить турбонасосный агрегат, а также и все остальные агрегаты, обслуживающие двигатель. В результате двигатель с новым соплом получается очень компактным и коротким.