В качестве примера, подтверждающего сказанное, на рис.42,а приведены габариты двигателей ракеты «Сатурн-5» Ф-1, имеющего тягу Р = 7000 кН с обычным соплом на рис.42,6 — габариты двигателя ракеты «Сатурн-1В» Н-1 с тягой Р=900 кН, на рис.42,е — габариты двигателя Ф-1 с кольцевым (тарельчатым) соплом.
Как видно, двигатель с кольцевым соплом оказывается в 100/40 что в 2,5 раза короче и равным по длине двигателю с тягой, почти в 8 раз меньшей. Отсюда соответственно уменьшаются габариты и всей ракеты, что в конечном
итоге приводит к заметному выигрышу в массе. Причем в полости центрального тела размещаются все агрегаты двигателя вместе с ТНА. Кольцевые сопла с центральным телом используются для двигателей большой тяги.
Рис.41
Схема простого кольцевого сопла:
Da-диаметр выходного сечения;
nкр- высота кольца критического сечения;
Rкр- средний радиус кольцевой щели критического сечения
Рис.42
Сравнение размеров двигателей
6.10. Кольцевые сопла
Простая схема сопла с центральным телом легко может быть видоизменена так, что получится новая схема кольцевого сопла, представленная на рис.43,а, у которой центральную цилиндрическую поверхность тока, проходившую через ось контура сопла х — х, заменили твердой стенкой. С точки зрения газовой динамики это вполне возможно, так как поверхность тока для газа так же непроницаема, как и твердая стенка. В результате получим схему сопла с центральным телом, которая в некоторых случаях может быть предпочтительнее: это сопло имеет внешнюю оболочку в виде простого цилиндра.
Газодинамическая схема течения в таком сопле практически ничем не отличается от схемы течения в предыдущем, если только учесть, что контур этого сопла соответствует «половине» контура предыдущего сопла.
Заметим здесь, что так как за выходной характеристикой АВ поток является однородным, т. е. с постоянной и параллельной скоростью, то совершенно нет необходимости продолжать внешнюю цилиндрическую оболочку сопла дальше точки А. Следовательно, можно внешнюю оболочку «обрезать» по сечению, в котором находится точка А, и получить сопло, показанное на рис.43, б. Естественно, такое сопло более выгодно, так как оно меньше по массе и его удобнее охлаждать — меньше огневая поверхность. В случаях если из условия обеспечения необходимой степени расширения выходной диаметр сопла получается меньше диаметра корпуса ЛА, то внешний диаметр тогда можно сделать равным диаметру корпуса, а нужную площадь выходного сечения сопла получить за счет устройства центрального тела с плоским торцом.
Наконец, как и в круглых соплах, с целью сокращения длины и уменьшения потерь на трение более выгодным будет сопло не с полностью параллельным истечением, а с некоторой степенью непараллельности. Такое сопло получается, если соответственно «обрезать» предыдущее сопло.
Кроме рассмотренных выше схем кольцевых сопел известны и другие их разновидности. Например, на рис.44, представлены две интересные схемы сопел и их разновидности, отличительной чертой которых является расположение плоскости критического сечения под некоторым углом к центральной оси сопла. Причем расположение критического сечения может быть двояким: с наклоном сечения к оси (вектор скорости в критическом сечении направлен к оси сопла, схема а) и от оси (вектор скорости в критическом сечении направлен от оси сопла, схема б). Такие сопла также можно представить себе как полученные вращением некоторого основного контура сопла вокруг центральной оси 1—1. Причем обе разновидности получаются в зависимости от расположения центральной оси 1—1 по отношению к исходному контуру. Первая схема (а) называется соплом с внешним расширением или штыревым соплом. Вторая схема (б) называется соплом с внутренним расширением или тарельчатым соплом.
Рис.43
Схемы кольцевых сопл с прямым критическим сечением
Кольцевые сопла с наклонным критическим сечением.
Рис.44
Схемы кольцевых сопл с наклонным критическим сечением
б.11.Требования, предъявляемые к распыливающему устройству ЖРД
Для эффективного сжигания жидкого топлива должно быть обеспечено егс полное испарение в заданное время и в нужном месте камеры сгорания двигателя. Для этого в нужный момент вся масса топлива, подаваемая в камеру сгорания, должна иметь максимальную поверхность. Значительное увеличение поверхности компонента может быть получено распылением его на мельчай-шие частицы. Поэтому распыливающее устройство ЖРД должно обеспечивать дробление жидких компонентов топлива, подаваемых в камеру сгорания под определенным давлением и в соответствующих количествах, на мельчайшие капли, быстрое и хорошее смешение их между собой. От того, насколько совершенно осуществляются эти процессы, в значительной мере зависят скорость
и полнота сгорания образующейся топливной смеси, величина потребного объ-ема камеры сгорания, ее размеры, удельный вес, устойчивость работы и другие характеристики. Чем совершеннее смесеобразование, тем экономичнее, устой-чивее и надежнее работа двигателя.
Процесс распыла жидких компонентов топлива зависит от их физиче-ских свойств, типа и конструкции форсунок, режима их работы и других фактов.
Форсунки двигателя дробят компоненты топлива на миллиарды ка-пель, имеющих поверхность, измеряемую десятками квадратных метров.
Если, например, 1 я жидкости до подачи в камеру сгорания имеет диаметр около 0,124 м и поверхность -0,0483 м2, то после дробления ее на капли диаметром 100 мк (10~4.м ) суммарная поверхность жидкости увеличится почти в 1240 раз и будет составлять около 60 м2.
Состояние теории смесеобразования и горения топлива в ЖРД в настоящее время не позволяет еще производить точные расчеты этих процессов. Поэтому при проектировании головок камеры двигателя приходится исходить из необходимости удовлетворения основных требований к смесеобразованию,
используя при этом результаты исследований и опыт эксплуатации.
Распылительное устройство (головка камеры) ЖРД должно удовлетворять следующим требованиям.
V1. Компоненты, топлива должны быть раздроблены на капли доста-шючно мелко и однородно, так как от тонкости распыла зависят качество смесеобразования, равномерность и скорость горения топлива.
В обычных схемах ЖРД тонкость распыла компонентов топлива зависит от типа, конструкции и производительности форсунок, их геометрических характеристик, перепада давлений на форсунках и других факторов.
Тонкость распыла компонентов топлива является качественным крите-г-ем смесеобразования и характеризуется средневесовым диаметром обра-зующихся капель. Чем меньше средний диаметр капель, тем лучше распыл и эффективнее процесс сгорание топлива.
Однородность распыла характеризуется изменением диаметров капель в факеле распыленного компонента топлива. Чем уже пределы, между которы-ми располагаются диаметры капелек распыливаемых компонентов топлива.
тем больше однородность распыла.
В современных ЖРД распыленные капли компонентов топлива имеют диаметр около 25—250 мк. Это значит, что 1 cм3 распиливаемой жидкости делится примерно на 6-106 капель. В азотно-кислотных двигателях средние весовые диаметры, капель керосина лежат в диапазоне 120—150 мк.
Топливо, состоящее из наиболее крупных капель, будет запаздывать с завершением смесеобразования и, следовательно, с завершением процесса диффузионно-турбулентного сгорания. При слишком грубом распыле, что возможно в результате неправильного выполнения распиливающего устройства или регулирования тяги двигателя изменением перепада давления компонентов топлива, может получиться резкое снижение эффективности процесса сгорания и неустойчивая работа.
Однако, тонкость распыла компонентов топлива сама по себе не является единственным средством улучшения качества рабочего процесса в камере сгорания двигателя. Система смесеобразования должна обеспечивать не только тонкий распыл и хорошее перемешивание компонентов топлива, но и организованный подвод тепла для их подогрева, испарения и воспламенения.
2. Концентрация распыливаемых, компонентов топлива по поперечному сечению камеры сгорания должна быть одинаковой, так как в противном случае сгорание их будет неполным.
В начале камеры сгорания обычно получается грубо перемешанная горючая смесь, которая при дальнейшем движении по камере сгорания продолжает перемешиваться и становится более однородной. Параллельно с этим процессом идут подогрев и испарение распыленных компонентов и выгорание образующейся горючей смеси.
Время завершения процесса сгорания топлива определяется главным образом скоростью смешения компонентов топлива. При прочих равных условиях смешение будет протекать тем интенсивнее, чем мельче газовые струйки компонентов топлива и больше скорость их относительно друг друга. Полнота сгорания топлива в конечном итоге определится отношением времени пребывания рабочего тела в камере сгорания ко времени, потребному для завершения процесса сгорания топлива.