Рис.66
Неравномерности полей давления, скорости и пульсации в межлопаточном канале крыльчатки
Объемная производительность насоса может быть определена по следующей зависимости:
где: b2 - ширина выходного сечения крыльчатки.
Радиальная составляющая абсолютной скорости на выходе из крыльчатки С2,г определяется из выражения:
Теоретический напор насоса при бесконечном числе лопаток, с учетом, рис.67, что:
равен:
Рис.67
Треугольник скоростей на выходе из центробежного насоса
Напорная характеристика насоса представляет зависимость напора от объемной производительности при постоянном числе оборотов крыльчатки, рис.68.
Рис.68
Напорная характеристика насоса с бесконечным числом лопаток крыльчатки
116
В центробежных насосах
меньше , т.к. при увеличе-нии
наблюдается существенный рост гидравлического сопротивле-ния жидкости в межлопаточном канале.
Поток жидкости при движении от входного сечения насоса до выхода аз диффузора испытывает неоднократные повороты, проходит сужения и рас-ширения канала, обтекает входные кромки лопаток и т.п. Во всех этих случаях теряется энергия на преодоление местного сопротивления, кроме того, всегда существуют потери на трение жидкости о стенки. Эти суммарные потери энергии в процессе течения жидкости через насос составляют гидравлические потери.
Зависимость гидравлических потерь в насосе от объемной производительности очень сложна: минимальные гидравлические потери имеют место при расчетном режиме течения жидкости, т.е. при расчетном значении объемной производительности насоса. Действительная напорная характеристика насоса Нд= f( V) представляет собой параболу, рис.69.
Рис.69
Напорные характеристики центробежного насоса
8.8. Кавитация
Кавитация - процесс образования пузырьков пара в тех зонах жидкости, в которых статическое давление меньше давления насыщенного пара,
завершающийся заполнением этих пузырьков жидкостью при их попадании в зону повышенного давления. Это явление наблюдается при чрезмерно больших скоростях жидкости (числах оборотов крыльчатки - n).
При высоких скоростях движения потока статическое давление может стать меньше давления насыщенных паров Psи тогда происходит закипание
жидкости, т. е. возникает кавитация.
В колесе центробежного насоса в отношении кавитации наиболее опасным является сечение входа жидкости на лопатки колеса, где полное давление жидкости минимально (насос еще не сообщил жидкости энергии), а абсолютная и относительная скорости потока велики.
Высокие относительные скорости жидкости на входе в лопатку способствуют образованию полостей пониженного давления с задней стороны лопатки, рис.70, т.е. способствуют возникновению кавитации. Кроме того, неравномерное поле абсолютных скоростей при подходе к лопатке вызывает дополнительное падение давления в струйках, где скорость будет больше средней.
Рис.70
Область пониженного давления при обтекании лопаток насоса
Кавитация нарушает нормальную работу насоса по двум причинам.
Во-первых, вследствие того, что часть объема, подаваемого насосом, оказывается заполненной парами жидкости, происходит падение напора и уменьшение расхода подаваемой жидкости.
Во-вторых, при попадании жидкости, имеющей в своей массе паровые мешки, в область более высоких давлений пар конденсируется и заполнение объема паровых мешков жидкостью происходит с большой скоростью (до 1500—1800 м/сек), что приводит к явлению гидравлического удара в момент заполнения объема. Совокупность направленных гидравлических ударов в фокус полусферы паровых объемов, находящихся на поверхности лопаток, приводит к эрозионному разрушению металла.
Различают режимы частичной и полной кавитаций. При режиме частичной кавитации, образовавшиеся пузырьки пара успевают «захлопнуться» во входном сечении крыльчатки. Так как кавитационная эрозия развивается постепенно, то ввиду малой продолжительности работы насосов ЖРД указанный режим работы не опасен. Однако кавитация в межлопаточной полости насосов ЖРД (режим полной кавитации) недопустима из-за падения напора и уменьшения объемной производительности.
Изменение напора при возникновении кавитации характеризуется так называемыми кавитационными характеристиками.
Различают срывные характеристики, рис.71, а, 6, т. е. зависимость напора Н от давления на входеРвх(или величиныРвх — Ps), и кавитационные характеристики, выражающие зависимость предельного давления на входе Рвхкав, ниже которого начинается кавитация, от числа оборотов п и объемной производительности V, рис.71 в. Срывные характеристики получают по результатам испытания насосов при заданных объемной производительности и числе оборотов.
Рис.71
Кавитационные характеристики: а,б — срывные характеристики; в — кавитационная характеристика
Рвх.кав =f(n. У)
Предельное давление на входе Рвхкав, ниже которого начинается кавитация, определяется как давление, при котором падение напора составляет 2— 3%. На основании серии проведенных испытаний строят кавитационные характеристики Рвх.кав. = f (n,V), рис.71, в. Кавитационные свойства насоса надежно устанавливаются только опытным путем.
Наименьшее давление при входе на лопатки Ртinможет быть определено как разность статического давления на входе в колесо Рвхи величины
дополнительного падения давления
вследствие образования зон пони-женного давления и неравномерности абсолютных скоростей, т. е.
Условие безкавитационной работы:
или
Величина (Рвх— Ps) характеризует напор, который еще может быть
использован для увеличения скорости потока без возникновения кавитации и называется кавитационным запасом.
При прочих равных условиях увеличение числа оборотов насоса п и
объемной производительности Vприводит к увеличению относительной и абсолютной скорости потока, а, следовательно, и к увеличению опасности возникновения кавитации. С ростом п и Vкавитация на лопатках возникает при меньших давлениях на входе.
При расчете насосов одной из основных задач является определение максимально допустимого по условиям кавитации числа оборотов насоса при заданных значениях давления на входе и объемной производительности. Исходя из условия безкавитационной работы
и проведя анализ величины составляющих
получим расчетную формулудля определения максимально допустимого числа оборотов насоса (формула С. С. Руднева):
где: С - антикавитационный коэффициент насоса;
Нвх - напор на входе в крыльчатку насоса;
Нs - напор, соответствующий условиям образования насыщенных паров жидкости.
Для обычных насосов С =800—1100. Для колес с высокими антикави-тационными свойствами, имеющих особые формы и лопатки специального профиля, С может достигать 2000—2200. При применении осевых или шнеко-вых преднасосов, что является одной из основных мер предотвращения кавитации, величина С увеличивается до 3000—3100. Имеются данные, что с помощью преднасосов удается повысить С до значений 3500—4000.
Кавитация может быть предотвращена также наддувом баков до 2—6 ата (= 0,2 / 0,6 МПа), что обеспечивает повышение давления на входе в насос, или применением крыльчаток с двухсторонним подводом жидкости.
Антикавитационные свойства насосов зависят от их конструктивных решений (количества и длины лопаток, угла атаки и т.д.), а также от термодинамических свойств подаваемого компонента.
8.9. Предвключенные насосы
Предвключенные насосы обеспечивают увеличение давления жидкости на входе в основной центробежный насос. Они бывают струйные и шнековые (бустерные).
Работа струйного преднасоса основана на процессе инжекции, т.е.
увеличении давления на входе в основной центробежный насос путем
подпитки поступающего потока жидкости более высоконапорной струей,
отбираемой от выхода центробежного насоса, рис.72.'