Типы турбин:
- осевая; б—радиальная центростремительная; в—тангенциальная: 7—сопловый аппарат, 2—лопатки
Осевыми турбинами называются турбины, в которых направление потока в меридиональном сечении параллельно (или почти параллельно) оси турбины.
Радиальными называются турбины, в которых направление потока в меридиональном сечении перпендикулярно оси турбины. В зависимости от направления потока газа различают центростремительные (направление потока от периферии к центру) и центробежные (направление потока от центра к пе-
риферии) турбины. В некоторых случаях применение радиальной турбины упрощает компоновку ТНА
Тангенциальными называются турбины, в которых газ движется по окружности в плоскости, перпендикулярной к оси турбины, и за счет трения увлекает за собой лопатки турбины.
По числу ступеней различают одноступенчатые и многоступенчатые турбины, рис.82.
Рис.82
Многоступенчатые турбины:
а—со ступенями скорости; б— со ступенями давления;
в—с поворотом газа
В многоступенчатой турбине газ после выхода из лопаток колеса попадает в спрямляющий (сопловой) аппарат и снова поступает на колесо во второй ряд рабочих лопаток. Количество ступеней может равняться двум, трем и более. Применение многоступенчатых турбин позволяет использовать больший теплоперепад, хотя установка ступеней связана с дополнительными гидравлическими потерями, вследствие чего максимальное значение КПД многоступенчатой турбины меньше, чем КПД одноступенчатой. Применение более двух ступеней дает незначительный выигрыш в работе.
Различают многоступенчатые турбины со ступенями скорости и со ступенями давления. В первых - перепад давлений срабатывается в сопловом аппарате первой ступени и полученная кинетическая энергия постепенно используется на других ступенях. В турбине со ступенями давления в каждой ступени срабатывает определенный перепад давления. Турбины со ступенями скорости имеют меньший КПД, по сравнению с турбинами со ступенями давления, однако, при их применении:
- требуется меньшее количество ступеней для срабатывания задан
ного теплоперепада (при одинаковой окружной скорости)'.
- более существенно снижается температура газа, поступающего в последующие ступени;
- значительно уменьшаются осевые силы.
В целом турбины со ступенями скорости проще и в сравнительно небольших ЖРД целесообразны. В двигателях больших тяг с выбросом генераторного газа в окружающую среду, когда эффективность ТНА играет существенную роль, возможно применение турбин со ступенями давления.
Разновидностью многоступенчатой турбины со ступенями скорости является турбина с поворотом подвода газа В этих турбинах газ из рабочих лопаток колеса поступает в поворотный канал, где изменяется направление потока, и повторно подводится к рабочему колесу. Такая турбина имеет большие потери, но зато рабочее колесо имеет один венец. Известно применение турбины с поворотом потока в ЖРД «Вальтер».
По степени использования проходного сечения соплового аппарата различают парциальные и непарциальные турбины Парциальными называются турбины, в которых сопловые каналы имеются только на части окружности. Отношение рабочей дуги соплового аппарата ар ко всей окружности называется степенью парциальности:
Парциальность вызывает дополнительные потери. В ряде случаев улучшение КПД турбины за счет увеличения и и за счет увеличена длины лопаток получается большим, чем падение его вследствие потерь на парциальность. Кроме того, при заданной температуре газа температура лопаток парциальной турбины ниже.
По числу валов различают одновальные и двухвальные турбины. Схема двухвальной турбины показана на рис.83.
Применение двухвальной турбины в ТНА ЖРД может оказаться целесообразным из-за значительной разницы в максимально допустимых числах оборотов насосов горючего и окислителя. Однако применение двухвальных турбин в ТНА может привести к усложнению запуска и регулирования двигателя, а также и усложняет конструкцию ТНА в целом.
Специфика условий работы турбины в ТНА и требования к ТНА, как важнейшему агрегату двигательной установки, определяют типы турбин, которые рационально использовать при различных схемах двигательных установок ЖРД. В ТНА жидкостных ракетных двигателей применяются главным образом осевые активные турбины. Эти турбины конструктивно проще и достаточно надежны в работе. Для ТНА жидкостных ракетных двигателей, работающих по открытой схеме (с выбросом генераторного газа в окружающую среду),
Рис.83
Двухвальная турбина
характерно применение парциальных активных турбин. Дело в том, что при открытой схеме для уменьшения потерь компонентов на привод ТНА стремятся уменьшить расход рабочего тела на турбину (это достигается увеличением перепада давления на турбине
= Рвх / Рвых = 15 - 60, за счет снижения давления за турбиной; однако, Рвых,min > 1,4 Рн). Вследствие малых расходов турбину целесообразно выполнять парциальной. Наличие же парциальности обусловливает применение активных турбин, так как в реактивных турбинах вследствие перепада давлений на лопатках колеса возникли бы большие потери из-за перетекания газа в области перед рабочими лопатками, где отсутствуют окна для подачи рабочего тела.В ТНА двигателей открытых схем используют как одно-, так и двухступенчатые турбины, чаще со ступенями скорости.
В ТНА жидкостных ракетных двигателей с замкнутой схемой (с подводом генераторного газа в головку камеры ЖРД) в основном используются осевые одноступенчатые, низконапорные (пт = 1,15-1,8) турбины с большим расходом рабочего тела. Применение нескольких ступеней при этом нецелесообразно из-за малого срабатываемого теплоперепада. При замкнутой схеме наряду с активными турбинами могут использоваться и турбины с небольшой реактивностью. Из удобства компоновки при замкнутой схеме возможно применение радиальных турбин.
Турбины для первоначальной раскрутки ТНА, работающие от пиро-стартера, обычно выполняют осевыми, одноступенчатыми, парциальными.
8.13. Основные параметры турбины
1.Мощность турбины
Nt= Nh,o+NH.r +Nвсп. ,
где: NHО,Nht, Nbcп. - мощности насосов окислителя, горючего и вспомогатель-ныхагрегатов, соответственно.
2.Перепад давления на турбине
пт = Рвх / Рвых .
3.Температура газа перед турбиной
Величина Тг, как правило, определяется жаропрочностью материала лопаток, Тг= 1100-1500 К.
4.Число оборотов вала турбины
n = 60 u / (п Дср), где:
и - окружная скорость рабочих лопаток, м/с; Дср - средний диаметр рабочих лопаток турбины.
При одновальной компановки ТНА число оборотов рабочего колеса турбины определяется исходя из условия безкавитационной работы насосов, а при многовальной - из условия обеспечения максимального коэффициента полезного действия турбины.
5.Эффективный коэффициент полезного действия турбины
где:
- потери на трение в сопловом аппарате; - потери на перетекание рабочего тела через радиальный зазор, образованчего тела из зоны повышенного давления за рабочими лопатками в зону пониженного после соплового аппарата на тех участках соплового аппарата, где отсутствуют выходные сечения сопел.
8.14. Требования, предъявляемые к газогенераторам
Величина тяги ЖРД, как известно, является линейной функцией секундного расхода топлива. Секундный расход топлива для каждого конкретного двигателя с насосной системой подачи компонентов зависит от мощности, развиваемой турбиной. Мощность турбины полностью определяется секундным расходом и параметрами рабочего тела на входе в турбину, т. е. на выходе из газогенератора. Поэтому газогенератор является устройством, задающим режим работы всей двигательной установки. Это обстоятельство и определяет особые требования к данному звену системы топливоподачи (помимо общих требований, предъявляемых ко всем агрегатам ЖРД, вне зависимости от специфики их работы). Эти требования сводятся к следующему.
1. Высокая стабильность работы.Это значит, что газогенератор на всех режимах работы двигателя должен возможно точнее обеспечивать заданный секундный расход газа и при этом значения параметров газа (состав, давление, температура и др.) не должны выходить за определенные (допустимые) пределы. Чем стабильнее работа газогенератора, тем меньшие нагрузки испытывают в полете системы управления работой двигателя, а это повышает надежность двигателя и точность стрельбы.