Особенно важна стабильность работы газогенератора для ракет с нерегулируемыми ЖРД и ракет, управление дальностью полета которых осуществляется только по скорости полета в конце активного участка траектории. В последнем случае отклонение координат конца активного участка траектории, вызванное отклонением тяги двигателя от расчетного значения, вследствие нестабильной работы газогенератора, целиком перейдет в отклонение точки падения ракеты от цели.
2.Простота управления рабочим процессом в широком диапазоне из
менения его параметров.Это требование также обусловлено регулирующим
воздействием газогенератора на двигатель и необходимостью изменения режи
ма работы двигателя в процессе одного запуска (при регулировании тяги во
время старта и в полете, при переходе с главной ступени тяги на конечную и т.
д.).
3.Высокая работоспособность генераторного газа,обусловливающая
либо минимальную затрату энергии (и соответственно минимальный расход
топлива) на привод ТНА, либо повышение мощности ТНА. Это требование
выдвигается в связи с тем, что удельный импульс двигателя определяется от
ношением тяги ко всему секундному расходу отбрасываемой массы. В понятие
же «отбрасываемая масса» входят как продукты сгорания топлива в камере, так
и отработанный после турбины газ. Для ЖРД, у которых этот газ выбрасывает
ся в атмосферу и развивает удельный импульс меньший, чем продукты сгора
ния топлива, истекающие из камеры двигателя, решающим условием повыше
ния экономичности двигателя является уменьшение расхода топлива на привод
ТНА. Для ЖРД с дожиганием генераторного газа главное—увеличение мощно
сти ТНА, так как это позволяет увеличить давление в камере и при заданном
значении давления на срезе сопла повысить степень расширения отбрасывав-
мыхпродуктов сгорания, т. е. увеличить термический КПД камеры. Уменьше-ниерасхода топлива на привод ТНА и увеличение мощности ТНА зависят от количества энергии, отдаваемой турбине одним килограммом рабочего тела. Эга энергия равна, как известно, произведению относительного эффективного КПД турбины на располагаемый адиабатический теплоперепад.
8.15. Классификация газогенераторов
Основу классификации газогенераторов составляет способ получения генераторного газа. В настоящее время распространены три способа газогенерации.
1. Разложение(с помощью катализаторов или без них) вещества, способного после внешнего инициирующего воздействия перейти к дальнейшему устойчивому самопроизвольному распаду, сопровождающемуся выделением значительного количества тепловой энергии и газообразных продуктов разложения. Таким веществом может быть как компонент основного топлива двигателя, так и специальное средство газогенерации, запасенное только для этой цели на борту ракеты. Газогенераторы, в которых реализуется этот процесс, называются однокомпонентными. В дальнейшем их различают главным образом по виду разлагаемого вещества (перекисеводородные, гидразиновые, на твердом топливе и т.п.).
2. Сжигание жидкого топлива, состоящего из двух компонентов. Лучше всего использовать для этой цели основное топливо двигателя, так как при этом существенно упрощается его подача в газогенератор и улучшаются условия эксплуатации ракеты. Газогенераторы этого типа называются двухкомпо-нентными.
3. Испарение жидкостив тракте охлаждения камеры двигателя. При этом способе получения рабочего тела турбины одновременно решается и задача охлаждении стенок камеры двигателя. Газогенераторы этого типа называют парогенераторами, а схемы двигателей—безгенераторными. Схемы парогенераторов подразделяются на циркуляционные и со сменой рабочего тела. В первых произвольное рабочее тело (например, вода) циркулирует по замкнутому контуру «тракт охлаждения камеры — турбина — конденсатор — насос — тракт охлаждения камеры», превращаясь попеременно то в пар, то в жидкость в различных его частях. В схемах со сменой рабочего тела эта циркуляция отсутствует. Рабочее тело после турбины выводится из цикла. Очевидно, что непосредственный выброс отработавшего газа в атмосферу заметно ухудшил бы экономичность двигателя, так как удельная тяга выхлопных патрубков всегда меньше удельной тяги камеры двигателя. Чтобы устранить эти потери, в тракт охлаждения камеры обычно посылается один из компонентов топлива. После испарения и срабатывания в турбине он направляется в камеру двигателя, где и сжигается вместе со вторым компонентом. Таким образом, безгенераторные двигатели выполняются по схеме с дожиганием рабочего тела турбины.
По конструкции системы газогенерации значительно, отличаются друг от друга, но тем не менее в каждой из них можно выделить следующие общие основные элементы:
- газогенератор;
- топливоподающие устройства;
- автоматику.
В газогенераторе (иногда называемом реактором) непосредственно образуется рабочее тело турбины - газ или пар заданных параметров. Топливоподающие устройства обеспечивают поступление средств газогенерации (исходных веществ) в реактор. Автоматика осуществляет регулирование рабочего процесса, а также запуск и выключение газогенератора. Иногда (например, при работе на основном топливе) система газогенерации не имеет самостоятельных топливоподающих устройств. В этом случае питание газогенератора топливом обеспечивается системой подачи двигателя. В ЖРД нашли применение следующие типы газогенераторов (ГТ):
- твердотопливный (ТГГ);
- гибридный (ТГГ);
- однокомпонентный жидкостный (однокомпонетный ЖГГ);
- двухкомпонентный жидкостный (двухкомпонентный ЖГГ);
- испарительный жидкостный (испарительный ЖГГ);
- аккумулятор сжатого газа (АСГ).
Твердотопливный газогенератор. В качестве источника газа в ТГТ используется заряд твердого вещества, генерирующий при сгорании или разложении газ с заданными физико-химическими характеристиками. Один из образцов ТГТ приведен на рис.84.
Рис.84
Твердотопливный ГГ
1—корпус ТГГ; 2—воспламенитель; 3—пружина; 4-заряд;5,9-гайки;
б, 11— шайбы; 7-прокладка; 8- диафрагма; 10—сопло; /2-крышка.
К веществам, используемым в ТГГ, предъявляют следующие основные требования: возможно большее значение RTпри конструктивно допустимых температурах, физическая и химическая стабильность при хранении и эксплуатации, способность устойчиво гореть при заданных температуре и давлении,
однозначность физико-химических свойств в партии зарядов, отсутствие или минимальное количество твердых частиц в газе, минимальное коррозионное и эрозионное воздействие газа на конструктивные элементы, минимальное отклонение параметров газа от расчетных при работе в заданном диапазоне температур окружающей среды и др.
Выбор состава твердого топлива. В состав заряда ТГГ в общем случае могут входить окислитель, горючее, замедлители горения, флегматизаторы (добавки, уменьшающие чувствительность составов к трению и удару), связующие вещества (органические полимеры, обеспечивающие механическую прочность спрессованных составов), вещества технологического назначения (например, растворители для связующих). Следует отметить, что одно и то же вещество может выполнять в составе заряда несколько функций, например связующие выполняют функцию горючего, а в некоторых случаях и замедлителей горения. Основой всякого состава является смесь окислителя с горючим.
Давление в камере ТГГ для заданной конструкции камеры и вида твердого топлива определяется газопроизводительностью заряда и расходом газа через критическое сечение сопла. Связь между этими параметрами определяется зависимостями, с помощью которых можно по заданному давлению в камере сгорания и поверхности горения заряда определить площадь сопла.
При проектировании нужно стремиться к снижению гидравлического сопротивления по газовому тракту и обеспечению его постоянства по времени. Наибольшая величина гидравлических сопротивлений обычно приходится на диафрагму, поддерживающую заряд. Через отверстия диафрагмы газ истекает в предсопловой объем. Гидравлическое сопротивление диафрагмы рассчитывают по общим формулам газодинамического расчета трактов. Обычно площадь сечений диафрагмы принимается в 3—5 раз больше площади сопла ТГГ. Рекомендуется, чтобы скорость течения газа не превышала 100—150 м/с.
Гибридный ТГГ. Работа гибридного ТГГ основана на введении во внутренний объем камеры ТГГ жидкого или газообразного окислителя, в результате взаимодействия которого с твердым горючим, находящимся в камере, генерируется газ. Преимущество гибридного ТГГ—возможность регулирования его газопроизводительности и параметров газа.
В качестве примера можно указать на гибридный ТТТ, у которого в качестве твердого горючего использована смесь «литий + полибутадиен»; в качестве жидкого окислителя - смесь фтора с кислородом. Этот ТГГ устойчиво работает в широком диапазоне изменения соотношения компонентов топлива (стехиометрическое соотношение 2,8) и обеспечивает генерацию газа как с избытком, так и с недостатком окислителя.
В системах с ТГГ иногда устанавливают фильтры и устройства для охлаждения и регулирования расхода газа. Фильтры используют для устранения твердых продуктов, образующихся при горении многих типов твердых топлив. Применяют фильтры динамического (сепарационного), сетчатого, а иногда комбинированных типов. В последнем случае грубая очистка осуществляется в сепараторе, мелкая - сетками. Расход газа можно регулировать путем установки клапанов сброса или регуляторов, изменяющих сечение сопла ТГГ, при этом потребное изменение площади сопла можно определить аналитическим путем.