Смекни!
smekni.com

Жидкостные ракетные двигатели (стр. 32 из 36)

Систему пирозарядов можно применять для многократного включения газогенераторов и камер двигателя. При этом число установленных зарядов будет определять число включений. Однако если не применять специальных мероприятий по теплоизоляции этих зарядов, то в процессе работы двигателя



или после его останова вследствие чрезмерного нагрева зарядов возможно их самопроизвольное срабатывание.

Рис89

Система пирозарядов, обеспечивающая воспламенение топлива в камере двигателя на стартовых позициях

Предварительный нагрев элементов конструкции двигателей, исполь­зующих гидразин как монотопливо, примерно на 600 К способствует ак­тивному процессу саморазложения гидразина.

Термохимический способвоспламенения горючих смесей предусматри­вает организацию пускового факела с помощью специальной пусковой камеры (форкамеры), которая устанавливается на форсуночной головке двигателя, рис.90. Перед запуском основной камеры двигателя любым из способов вос­пламеняется пусковое топливо в форкамере. В частности, возможен вариант использования газов, отобранных из газогенератора питающего ТНА, для вос­пламенения пускового топлива. Возможно также применение в форкамере са­мовоспламеняющихся топлив или легковоспламеняющихся топлив («кислород + этиловый спирт»).

Для обеспечения надежного воспламенения топлива в камере требует­ся непрерывная работа запального факела для поддержания горения основных расходов топлива вплоть до установления номинального давления в основной камере двигателя. Для этого необходимо, чтобы давление подачи пускового топлива перед форсунками форкамеры всегда превышало давление в основной камере двигателя, а перепад давлений на сопле форкамеры всегда был сверх­критическим. Если основное топливо только пересекает пусковой факел или в него не попадает, то оно воспламеняется с большой задержкой, что сопровож­дается забросами и пульсациями давления и запуск становится ненадежным.


Для избежания аномальных явлений необходим такой пусковой факел, чтобы время пребывания в нем основного топлива было наибольшим, а его форма гарантировала попадание в пусковой факел всего основного топлива. Из всех возможных вариантов расположения форкамеры на основной камере для на­дежного воспламенения топлива должен быть принят вариант соосного распо­ложения форкамеры с основной камерой двигателя. При этом профиль расши­ряющейся части сопла форкамеры обеспечивает полный контакт пускового факела с основным топливом (хотя продукты сгорания не во всех случаях мо­гут следовать за профилем сопла).

Рис.90

Форкамерный способ воспламенения горючих смесей

Для более плавного запуска с форкамерным устройством больших ка­мер двигателей в атмосферных условиях при включении основного расхода топлива предпочтительнее опережение подачи окислителя.

В современных ЖРД необходимая мощность тепловыделения для га­рантированного воспламенения горючих смесей требует пусковых расходов для форкамерного устройства примерно на два - три порядка меньше, чем рас­ходы основной камеры.

Форкамерные устройства для воспламенения горючих смесей по срав­нению с другими способами имеют то преимущество, что могут быть включе­ны и в период останова двигателя. Это способствует принудительному догора­нию топлива, попадающего в камеру двигателя из заклапанных полостей после закрытия главных топливных клапанов.

Термоакустический способвоспламенения горючих смесей основан на эффекте разогрева газа в тупиковой полости при набегании на ее открытый торец струи холодного газа со сверхзвуковой скоростью, рис.91.


Рис.91

Принципиальная схема термоакустического устройства

для воспламенения горючих смесей:

1 - сверхзвуковое сопло; 2 - корпус; 3 - дренажная полость; 4 - цилиндрическая

тупиковая полость; 5 - реакционная полость; 6 - фланец крепления

Если подавать холодный газ через сопло 1 в открытый торец цилинд­рической тупиковой полости 4, который затем дренируется через полость 3, то во внутренней полости цилиндра образуются колебания газа с частотой, соот­ветствующей собственной акустической частоте цилиндрической тупиковой полости. Усиление амплитуд колебаний давления газа в цилиндре вызывается резонансом вынужденных и собственных колебаний в динамической системе «сопло — полость».

Турбулентное течение газов из сопла 1 со сверхзвуковой скоростью при встрече с неподвижной средой сопровождается широким спектром колеба­ний давления газа в струе. В этом спектре также содержатся колебания с часто­той, равной (или близкой) частоте собственных акустических колебаний ци­линдрической тупиковой полости. Колебания давления газа в набегающей струе являются вынужденными по отношению к собственным колебаниям ци­линдрической тупиковой полости. Настройка динамической системы «сопло -полость», вызывающая резонанс этих колебаний, производится изменением расстояния «х» от сопла до открытого торца тупиковой полости. Таким обра­зом определяется взаимное положение сопла и цилиндра, обеспечивающее сдвиг фаз между вынужденными и собственными колебаниями, равными (или близкими) 180°. При этом в цилиндре тупиковой полости устанавливается мак­симальная амплитуда колебаний давления колебаний газа. В результате усиле­ния амплитуды колебаний газа в тупиковой полости цилиндра в каждой волне сжатия повышается температура газа и с течением времени за счет большой (собственной) частоты циклов колебаний в цилиндрической тупиковой полости температура одной и той же порции газа намного превышает температуру тор­можения газовой струи. В результате происходит разогрев стенок цилиндра и особенно закрытого торца тупиковой полости до температур, которые соответ­ствуют установившемуся тепловому балансу цилиндра. Из опытов получено, что за время, приблизительно равное 50 с, торец тупиковой полости нагревает-


ся до 1ООО К; за время 100 с - до 1500 К и более, вплоть до расплавления мате­риала тупиковой полости (если не будет организован теплоотвод). Использова­ние термоакустического эффекта разогрева тупиковой полости от холодной струи газа состоит в том, что по достижении необходимой температуры нагре­ваемого цилиндра на его поверхность направляются пусковые порции несамо­воспламеняющихся окислителя и горючего, которые воспламеняются на ней, а затем из реакционной полости 5 подаются в виде нагретых продуктов сгорания в основную камеру двигателя. В результате реализуется форкамерное устрой­ство, которое крепится к форсуночной головке двигателя фланцем 6, представ­ляющее собой автономный агрегат системы воспламенения топлив в камерах двигателя и газогенератора ЖРДУ. Работоспособность такого устройства обес­печивается при давлении подачи холодного газа в сверхкритическое сопло 1 в диапазоне (4 — 15) 105 Па при атмосферном противодавлении в дренажной полости 3.

Принципиально цилиндрическая тупиковая полость 4 может быть по­мещена в полость газогенератора или камеры двигателя без реакционной по­лости 5 и может служить нагревным источником воспламенения основного топлива.

Недостатком термоакустического способа воспламенения горючих смесей является низкая мгновенная мощность тепловыделения и низкий терми­ческий коэффициент полезного действия. Усиление мощности тепловыделения возможно путем многокаскадной подачи пускового топлива в реакционной камере форкамерного устройства, или за счет увеличения числа нагреватель­ных цилиндров, помещенных в газогенераторы или камеры двигателя. Низкий термический КПД приводит к значительному расходу холодного газа.

Положительным свойством термоакустического устройства следует считать его полную независимость от характера протекания рабочих процессов в камере двигателя или газогенераторах. Нагревный цилиндр полностью изо­лирован от воздействия на него окружающей среды. Выполненный из жаро­прочных и антикоррозионных материалов, он оказывается защищенным от аг­рессивной среды, нагарообразования, воздействия высоких и низких темпера­тур, давления и влажности окружающей среды и других внешних факторов.

Свойства автономности термоакустического устройства позволяют предполагать его преимущественное применение при низких начальных темпе­ратурах окружающей среды (например в космических условиях) для надежного воспламенения несамовоспламеняющихся топлив и в низкотемпературных га­зогенераторах, использующих жидкий кислород и жидкий водород.

Электрические способывоспламенения горючих смесей предполагают применение высоковольтных искровых свечей и низковольтных свечей по­верхностного нагрева.

Высоковольтная свеча искрового разряда получила широкое распро­странение в двигателях внутреннего сгорания и других атмосферных двига­телях, и ее применение в ЖРД обусловлено естественной исторической преем­ственностью.


Поскольку бортовая система питания электроэнергией располагает низковольтным источником постоянного тока, то для его преобразования в ток высокого напряжения необходимо применение специальных устройств.

Рис.92

Принципиальная схема системы электрического зажигания горючих смесей

с помощью высоковольтной искровой свечи: 1 - искрогасящий конденсатор; 2 - источник питания постоянного тока; 3 - ключ зажигания, 4 - низковольтная обмотка преобразователя напряжения; 5 - подвижный контакт,6 - неподвижный контакт; 7 - пружина якоря; 8 - якорь; 9 - сердечник; 10 - высоковольтная обмотка преобразовате­ля напряжения; 11 - резистор; 12 - контакт центрального электрода; 13 - корпус свечи; 14 - кера­мический вкладыш; 15 - керамический изолятор; 16 - центральный электрод свечи; 17 - боковой электрод свечи