Смекни!
smekni.com

Жидкостные ракетные двигатели (стр. 5 из 36)

Условные обозначения к рис.20:

ВСПК - вытеснительная система подачи компонентов, рис.21; 1-ЖРД с газогенератором, работающим на автономном топливе, рис.22; 2-ЖРД с газогенератором, работающим на основных компонентах топ­лива, рис.23;

3-ЖРД без газогенератора с газификацией охладителя в зарубашечном про­странстве, рис.24; 4-ЖРД с двумя газогенераторами, рис.25.

В зависимости от агрегатного состояния компонентов ( «Ж» -жидкость или «Г» - газ), поступающих в камеру сгорания, все конструктивные схемы ЖРДУ можно условно классифицировать на «Ж - Ж», «Ж -Г» или «Г -Г». Необходимо отметить, газификация компонента способствует улучшению энергетических показателей ЖРДУ.

В ЖРД с ВСПК, рис.21, рабочее тело (инертный газ) из газового акку­мулятора давления 1 через редукторы 2 направляется в баки окислителя и го­рючего 3. Далее окислитель поступает в смесительную головку 4 камеры, а горючее в зарубашечное пространство, образованное двойными стенками ка­меры ЖРД.

Основным преимуществом данной схемы является конструктивная простота (отсутствие ТНА). Однако, для ЖРД работающих по указанной схеме характерны сравнительно невысокие значения тяги и удельного импульса, что

29


Рис.21


Рис.22

определило ее применение в качестве двигателей ориентации. Кроме того, в связи с нагруженностью баков для компонентов избыточным давлением они выполняются толстостенными, что приводит к существенному ухудшения мас­совых характеристик ЖРДУ в целом.


В данной конструктивной схеме ЖРДУ, рис.22, в качестве рабочего тела приведения во вращение турбины 1 ТНА используется перекись водорода . поступающая в парогазогенератор 8 и разлагающаяся в нём под действи­ем катализатора перманганата калия К Mg04 с образованием парогаза при температуре 600 - 800К. Парогаз направляется на лопатки турбины, обеспечи­вая вращение насосов 2, 3, 4 и, следовательно, подачу компонентов в комеру сгорания ЖРД - 5. Генераторный газ из турбины выбрасывается через патрубок 6 а сопло 7 за пределы двигателя. В некоторых ЖРД, работающих по указан-ной схеме, генераторный газ использовался для создания управляющих усилий для ориентации ЛА в пространстве и для создания дополнительной тяги путём его введения в расширяющуюся часть сопла. Данная конструктивная схема ЖРДУ использовалась до 70 годов двадцатого столетия.

Рис23

Особенностью данной конструктивной, рис.23, схемы является более эффективное использование генераторного газа, путём его подачи в смеситель-нуюголовку камеры через газовод 9. В зависимости от соотношения компо-нентов (величины коэффициента избытка окислителя - а), подаваемых в газо­генератор, он может быть окислительного или восстановительного типа. Дав-ление в полости турбины должно быть выше давления в смесительной головке на величину гидравлического сопротивления газовода.

Конструктивная схема ЖРД, представленная на рис.24, используется, когда в качестве одного из компонентов применяется жидкий водород, который проходя через систему последовательно расположенных насосов (снижение вероятности взрыва при резком повышении давления компонента), направляет-




Рис.24

ся в зарубашечное пространство камеры, образованное её двойными стенками, где газифицируется и в дальнейшем поступает на лопатки турбины, приводя во вращение насосы, а затем - через газовод в смесительную головку камеры.

Рис.25

В данной конструктивной схеме ЖРДУ. рис.25, оба компонентапосту­пают в головку камеры в газообразном состоянии. При этом один изгазогене­раторов относится к окислительному типу, другой - к восстановительному.


5.3. Общие сведения о жидкостных ракетных топливах (ЖРТ) Классификация ЖРТ

Успешное освоение космического пространства осуществляется в основном с помощью жидкостных ракетных двигательных установок (ЖРДУ). Жидкие ракетные топлива, по сравнению с твердыми (ТРТ) обеспечивают лучшие энергетические характеристики, возможность многократного включе-нияи выключения двигателя, а также оперативное изменение тяги при полете

-А. Перспективное в принципе использование ядерных ракетных двигателей сдерживается в настоящее время их массовыми характеристиками, а также

сложностями, связанными с обеспечением радиационной безопасности и отво-з:ч тепла от активной зоны после выключения двигателя, вследствие остаточ-ного тепловыделения радиоизотопов — продуктов цепной реакции деления. Несомненно, что ЖРТ останутся основным энергетическим источником для ракетных двигателей различного назначения на ближайшие десятилетия.

В ракетных двигателях на химическом топливе выделение энергии происходит за счёт следующих химических реакций:

а)реакции окисления—восстановления (окисления), когда энергия вы­
деляется при реакции между окислительными и горючими элементами; топли­
во состоит в этом случае по крайней мере из двух веществ — окислителя и го­
рючего;

б)реакции разложения, когда тепло выделяется в процессе разложе-
ния сложного вещества на более простые; топливо в этом случае может состо­
ять только из одного вещества;

в)реакции рекомбинации (соединения), когда тепло выделяется при
соединении одноименных атомов или радикалов в молекулы.

Окислитель и горючее в общем случае являются сложными соедине-ниями. в состав которых могут входить как окислительные, так и горючие эле­менты, а также нейтральные.

Горючим является такое вещество, которое независимо от того, содер­жатся в нем окислительные элементы или нет, для полного окисления своих горючих элементов требует окислителя извне. Так, например, этиловый спирт С2 Н5 ОН, кроме горючих элементов (С и Н), содержит в себе и окислительный элемент — кислород, но его совершенно недостаточно для полного окисления горючих элементов спирта; поэтому этиловый спирт является горючим.

Окислителем является вещество, в котором хотя и могут быть горючие элементы, но окисляющих элементов в нем имеется значительный избыток, так что при полном окислении его собственных горючих элементов остается сво-5одное количество окислительных элементов, которые могут быть использова-ля окисления какого-либо другого горючего. Например, азотная кислота HNO3 или перекись водорода Н2 02 содержат в себе горючий элемент — водород, однако окислительный элемент (кислород) в них имеется в таком ко­личестве, что при полном окислении водорода азотной кислоты или перекиси водорода в них остается избыток кислорода, который можно использовать для


окисления какого-либо горючего; поэтому HN03 и Н202 являются окислите­лями.

К горючим элементам относятся углерод С, водород Н, бор В, алюми­ний А1, литий Liи другие. Окислительными элементами являются фтор F, ки­слород О, хлор О. Фтор и кислород значительно превосходят по эффективно­сти другие окислительные элементы.

Доли окислителя и горючего в топливе определяются величиной, на­зываемой соотношением компонентов. Теоретическим (стехиометрическим) соотношением компонентов

называется такое минимальное количество окис­лителя, которое необходимо для полного окисления 1 кг горючего. Иначе гово­ря, теоретическое соотношение компонентов, это такое отношение расходов окислителя и горючего, при котором окислитель полностью окисляет горю­чее, не оставаясь при этом в избытке.

Действительным соотношением компонентов

называется дейст-

вительное отношение расходов окислителя и горючего, подаваемых в камеру, которое может отличаться от теоретического. Обычно

Отношение

называется коэффициентом избытка окислителя.

Коэффициент избытка окислителя, при котором получается максимальная ве­личина удельного импульса, называется оптимальным.

На рис.26 представлена классификация жидкостных ракетных топлив, а в таблице 1 - их основные параметры и области применения.


Тип топлива Характер воспламе­нения
Область приме­нения
Катали­затор - 1440 1250 1900 Рабочее тело для турбины
Катали­затор - 1000 1475 2200

Рабочее тело для

турбины или вспомогательно­го ЖРД

Самовосп. 3,05 1180 3415 2770 Маршевые дви­гатели РН типа «Про­тон»
Несамовосп. 2,7 1020 3690 2930 Маршевые дви­гатели РН «Со­юз» и 1-ой сту­пени «Энергия»
Самовоспл. 3,0 1270 3165 2680 Маршевые дви­гатели ракет и малых РН
Самовоспл. 15, 0 670 4760 3970 Опытные образ­цы сверхмощных РН
Несамо-воспл. 6,0 350 3420 3790 Маршевые дви­гатели верхних ступеней РН

Топлива ракетных двигателей могут быть разделены на следующие: жидкие топлива раздельной подачи (многокомпонентные) и жидкие унитарные (однокомпонентные) топлива.