б.Наименьшей возможной вязкостью, так как при высокой вязкости резко растут гидравлические сопротивления, увеличивается давление насосов, что ведет к увеличению веса турбонасосного агрегата (ТНА).
7. Наименьшим коэффициентом поверхностного натяжения, что способствует лучшему растеканию по поверхности охлаждающей жидкостии исключает возможность образования паровых пузырей, вызывающихместные перегревы и точечные прогары стенок камеры.
8. Высокой скоростью сгорания;
9. Малым периодом задержки воспламенения.
Требования при эксплуатации топлив вне овигатая.Эксплуатационные требования определяются свойствами топлив. Ими же определяются и эксплуатационные затраты, связанные с заправкой, хранением и контролем. Выбор конструкционных материалов зависит как от коррозионнойактивности компонентов топлива, так и от их температуры застывания. Длительноехранение ЛА в заправленном состоянии требует высокой стабильности компонентов топлива. Отработка ЖРДУ на нетоксичных, пожаро- ивзрыво-безопааныхтоп-ливах значительно упрощается вследствие снижения требоваваний погерметичности, значительного удешевления стендовой базы, транспортныхрасходов. Значение эксплуатационных требований возрастает для пилотируемыхЛА, а также для аппаратов многократного использования и длительногохранения. Наконец, экологические проблемы требуют дополнительного и подробного анализа воздействия компонентов топлива и их продуктов, сгораниянаокружающую среду. Поэтому в данном случае желательно использоватьнетоксичные, пожаробезопасные, взрывобезопасные, коррозийно-неактивныеста-
бильные при длительном хранении имеющие низкую температуру застывания, жидкие ракетные топлива.
Большие эксплуатационные затруднения создают коррозионно-активные компоненты топлива. Высокой коррозионной активностью отличаются азотная кислота, окислители на ее основе, а также азотный тетраксид. Приходится использовать только такие материалы, на которых образуется пассивная пленка, предохраняющая металл от воздействия окислителя. Например, при воздействии азотнокислого окислителя на поверхности алюминия образуется тонкая пленка окиси Аl203, надежно защищающая металл от дальнейшего окисления.
Скорость коррозии металла в окислителе увеличивается с увеличением содержания воды и температуры окислителя. Для уменьшения коррозии широко используются ингибиторы коррозии: йод и его соли, фтористый водород, ортофосфорная и серная кислоты. Так, например, коррозия легированной хро-моникелевой стали уменьшается примерно в 10 раз при добавлении в красную дымящую азотную кислоту (КДАК) 1 % ортофосфорной кислоты.
Продукты коррозии металлов в азотно-кислотном окислителе могут забивать фильтры, каналы малого сечения в топливно-регулирующей аппаратуре и являться причиной отказа ЖРДУ. Особенно жестко контролируется наличие твердых примесей в двигательных установках длительного хранения.
Важным эксплуатационным свойством компонентов ЖРТ явтяется их стабильность при длительном хранении. Один из наиболее ненадежных компонентов ЖРТ при этом — перекись водорода, склонная к самопроизвольном}' разложению. Стабильность перекиси возрастает с увеличением ее чистоты и концентрации. Для стабилизации технической перекиси водорода используются оловянная, орто- и пирофосфорная кислоты, а также их соли (1-3%).
Для обеспечения длительного хранения перекиси водорода в составе заправленной ЖРДУ необходимо использовать комплексный подход, который может быть реализован при:
1) обеспечении чистоты исходного продукта;
2) выборе конструкционных материалов, исключающих каталитическое воздействие (исключаются серебро, платина, свинец, ртуть, органические соединения и др.);
3) использовании стабилизаторов, дезактивирующих катализаторы разложения;
4) удалении продуктов разложения из системы подачи топлива.
Большое значение для систем подачи топлива ЖРДУ имеет температурный диапазон существования компонента топлива в жидкофазном состоянии. Длительная стоянка ЛА в заправленном состоянии при температуре окружающей среды не позволяет использовать ряд компонентов с хорошими энергетическими свойствами. Так, четырехокись азота при нормальном давлении кипит при 294 К и при 262 К застывает. Концентрированная перекись водорода застывает при 276 К, а трифторид хлора кипит при 285 К. Для задач, связанных с длительным хранением компонентов в заправленном состоянии, приходится либо ставить специальную систему термостатирования, либо использовать
смешанные окислители (АК-20, АК-27 и др.) с более широким температурным диапазоном, но несколько худшими энергетическими характеристиками. Постановка системы термостатирования усложняет весь ракетный комплекс.
Заметное усложнение ЖРДУ вызывает применение несамовоспламеняющихся компонентов. В этом случае приходится использовать систему зажигания (химическую, электрическую, пиротехническую либо газодинамическую). Использование пусковых самовоспламеняющихся компонентов топлива влечет на собой введение дополнительных емкостей, трубопроводов, клапанов и агрегатов управления. Для электрозажигания требуется источник электроэнергии, при этом усложняется конструкция головки камеры, на которой размещается блок зажигания. Пиротехническая система предусматривает постановку нескольких пиропатронов, газоводов для двигателей многократного запуска.
Газодинамическая система основана на использовании части кинетической энергии расширяющейся струи (5—6%) для нагрева специальной поверхности, контактирующей с компонентами топлива. При ее применении также усложняется конструкция головки камеры и требуется источник газа.
Жидкий кислород не обеспечивает воспламенения с большинством освоенных горючих, но триэтилалюминий, триэтилборан и их смеси с кислородом самовоспламеняются. Углеводородные горючие при обычных температурах не воспламеняются с азотно-кислотными окислителями и перекисью водорода.
Практически со всеми горючими только фтор и ряд его производных обеспечивают хорошее самовоспламенение однако высокая их активность приводят к существенному усложнению и удорожанию как стендовых комплексов, так и летных образцов ЛА.Учет конкретных эксплуатационных характеристик компонентов ЖРТ на ранних этапах проектирования ДУ позволяет обеспечить надежное функционирование системы подачи, а также хранение и транспортировку ЛА в заправленном состоянии.
Большинство топлив ракетных двигателей представляет собой токсичные, т. е. ядовитые отравляющие вещества.
Установлены предельно допустимые концентрации ядовитых веществ в воздухе рабочих помещений, которые даже при длительном (6—8 ч) и непрерывном воздействии не оказывают вредного влияния на здоровье работающих.
Сокращением срока пребывания в атмосфере, зараженной ядовитыми газами или парами компонентов топлива, предельная допустимая концентрация может быть несколько повышена, так, например, для окиси углерода СО, если время пребывания не более одного часа разрешается до 0,05 мг/м3 воздуха, а для времени пребывания в 15—20 мин может достигать даже 0,2 мг/м3. Однако надо иметь в виду, что ряд веществ с особенно высокой токсичностью, таких как фтор, окислы азота, производные фтора и хлора, не допускает даже незначительных отклонений от установленных норм.
Степень токсичности различных веществ различна и обычно оценивается так называемой допустимой концентрацией ядовитого вещества в воздухе (мг/л). Иногда степень токсичности сравнивается по так называемой летальной
лозе (LD50) — это такое количество ядовитого вещества в миллиграммах на 1 кг веса живого организма, которое будучи введено в организм приводит к 50 % -ной смертности подопытных животных.
Важным экономическим фактором при создании и эксплуатации комплексов с ЖРДУ является стоимость компонентов ЖРТ. Вклад стоимости компонентов в суммарную стоимость технической системы возрастает с увеличением габаритных размеров ЛА и их количества в серии.
Экономические требования.При массовом использовании ЛА с ЖРДУ, а также ЛА с ЖРДУ многократного использования возрастает роль экономического фактора. Производство новых высокоэффективных ракетных топлив невозможно без подготовки и развития сырьевой и производственной базы. При этом стоимость производимых компонентов должна быть достаточно низкой.
Выполнить все требования, предъявляемые к ЖРТ и сформулированные в настоящем разделе, практически невозможно. Более того, одна группа требований часто противоречит другой. Поэтому выбор компонентов топлива должен определяться в основном теми задачами, которые выполняет ЛА.
5.5. Перспективные ЖРТ
Вслед за освоением и широким применением одного из наиболее эффективных топлив — кислородно-водородного — стали осваивать топлива с использованием наиболее активного окислителя — жидкого фтора и его соединений. Применение этих окислителей для двигателей нижних ступеней ракет сдерживается высокой токсичностью фтора и его продуктов сгорания. Поэтому возможной областью использования фторных топлив являются верхние ступени ракет и космические аппараты, для которых исключительно важны высокие энергетические характеристики. Для межпланетных космических аппаратов ведется разработка многофункциональных двигателей на фторгидразиновом топливе. При малых уровнях тяг (для коррекции траектории полета) используется режим работы двигателя на однокомпонентном гидразиновом топливе. Для обеспечения высоких уровней тяг (торможение космического аппарата, увеличение скорости полета и т. д.) используется режим работы на двухкомпо-нептном топливе (впрыск фтора в поток продуктов разложения гидразина). Дальнейшей перспективой по применению более эффективных топлив может явиться освоение и внедрение металлосодержащих топлив. Для двигательных установок боевых ракет имеется существенное ограничение круга возможных топлив—они должны допускать длительное хранение ракет в заправленном состоянии. При этом необходимо сочетать высокий удельный импульс и большую плотность топлива. Работы по созданию и освоению металлосодержащих топлив, типичным среди которых является гелированный гидразин с алюминиевым порошком в качестве горючего и высококонцентрированная перекись водорода или четырехокись азота в качестве окислителя, могут привести к существенному улучшению энергетических и массовых характеристик двигательных установок на высококипящих топливах.