Смекни!
smekni.com

Жидкостные ракетные двигатели (стр. 8 из 36)


Низкая плотность и низкая температура кипения жидкого водорода за­трудняют его использование в ракетах для продолжительных космических по­летов. В связи с этим перспективным представляется применение шугообраз-ного водорода. Содержание твердого водорода в двухфазной смеси может со­ставлять около 50 %. Основные преимущества шугообразного водорода перед обычным — повышенная плотность и увеличенная хладоемкость, а, следова­тельно, увеличение времени хранения. Использование гелей шуги водорода может облегчить решение проблемы относительно длительного хранения жид­кого водорода в космических условиях.

Значительное внимание уделяется криогенным углеводородным го­рючим, полученным на основе низкомолекулярных газообразных углеводоро­дов: метана

этана
пропана
и др. Эти углеводороды доступны, могут храниться в условиях космического пространства, имеют низкую стои­мость и сравнительно высокие значения удельного импульса при использова­нии в паре с жидким кислородом. Жидкий метан, например, является еще и хорошим охладителем, позволяет получать восстановительный генераторный газ, не содержащий конденсата. Газообразный метан может быть нагрет в ру­башке охлаждения ЖРД до 1000 К. Все это делает перспективным применение криогенных углеводородов (возможно в шугообразиом состоянии) для мощных марщевых двигателей ракет-носителей и для двигателей космических аппара­тов с длительным пребыванием в космосе.

Так, например, следуя букве и духу концепции двигательных устано­вок на экологически чистых и дешевых компонентах топлива. КБ химической автоматики им. С. А. Косберга (Воронеж) в инициативном порядке приступило к освоению топлива «жидкий кислород - сжиженный природный газ» («ЖК -СПГ»). Природный газ на 98% по объему- содержит метан и оценивается веду­щими специалистами отрасли как топливо, наиболее полно удовлетворяющее требованиям к двигателям нового поколения.

При первом огневом испытании экспериментального двигателя на топ­ливе ЖК-СПГ 30 апреля 1998 г. выполнены работы по проверке работоспособ­ности стендовых систем, отработке технологии заправки метаном, термостати-рования ЖРД перед пуском, исследования характеристик запуска и выхода двигателя на основной режим.

Цели и задачи начального (демонстрационного) этапа освоения нового топлива выполнены. Полученные экспериментальные данные и приобретенный опыт работ с СПГ позволяет перейти к проектированию и подготовке огневых испытаний ЖРД нового поколения.

По контрактам с Корпорацией КОМПО-МАШ и Центромим. М. В. Келдыша проведена расчетно-конструкторская, материаловедческая и техноло­гическая проработка ряда новых двигателей.

Большое внимание уделяется улучшению свойств высококипящих углеводородных горючих. Разрабатываются углеводородные горючиенефтяно­го происхождения и синтетические, с улучшенными физико-химическими свойствами, повышенной плотностью и т. п. В США создано углеводородное горючее RJ-5, имеющее плотность, существенно более высокую, чемкеросин.

42


Среди исследуемых двухкомпонентных топлив, окислитель и горючее которых являются химически устойчивыми индивидуальными веществами, топливо фтор + водород является наиболее эффективным из всех известных. Вместе с высоким удельным импульсом эти топливо имеет и сравнительно вы­сокую плотность вследствие высокой плотности жидкого фтора и большого значения оптимального соотношения компонентов. Несмотря на высокую ток­сичность и агрессивность фтора и продуктов сгорания, освоение этого топлива рассматривается как дальнейшее развитие и улучшение уже освоенного топли­ва 02 + Н2.

Комбинация F2,ж+N2Н4 и имеет сравнительно высокие значения удельного импульса и плотности. Охлаждающие свойства гидразина позволяют преодо­леть трудности теплозащиты, связанные с высокой температурой горения. Специальные добавки, не влияющие на энергетику, устраняют опасность раз­ложения и взрыва гидразина при использовании его для регенеративного охла­ждения.

Исследуемые высококипящие топлива сравнительно немногочисленны. Согласно публикуемым материалам наиболее эффективным по удельному им­пульсу является топливо на основе высококонцентрированной перекиси водо­рода с пентабораном. Пентаборан чрезвычайно токсичен и самовоспламеняется в воздухе. Однако найдены присадки, устраняющие эту опасность (температура самовоспламенения повышается на 100 К). К недостаткам рассматриваемого топлива относят высокую температуру плавления концентрированной перекиси водорода. В то же время стабильность Н202 достаточна для применения во многих случаях: чистые растворы концентрированной Н202 разлагаются со скоростью, меньшей 0,6% в год.

Топливо N204 + B5H9 имеет существенно меньшее теоретическое значе­ние удельного импульса, но более высокую плотность и стабильность, оба его компонента пригодны для применения в системах с предварительной заправ­кой и герметизацией емкости.

Среди выосокоэнергетических горючих внимание привлекают металлы Be, Li, A1 и их гидриды. При горении этих металлов в кислороде и фторе на единицу массы продуктов сгорания (окислов и фторидов) выделяется больше теплоты, чем, например, при горении водорода. Кроме этого, указанные метал­лы имеют довольно высокую плотность. Согласно термодинамическим расче­там применение добавок легких металлов, главным образом Be, может обеспе­чить существенное повышение энергетических характеристик топлив.

Применение металлических добавок к топливу на основе жидкого водо­рода снижает плотность топлива, что связано с уменьшением количества окис­лителя в топливе и увеличением количества водорода при оптимальных соот­ношениях. Оптимальным соотношением всех компонентов является примерно такое, когда весь окислитель расходуется на стехиометрическое окисление ме­талла, а водород добавляется до достижения максимального удельного импуль­са.

Аналогичные данные показывают возможности повышения характери­стик некоторых высококипящих топлив путем использования металлических добавок.

43


Для высококипящих топлив также характерно уменьшение оптимально­го количества окислителя при добавлении металла, однако из-за более высокой плотности горючих по сравнению с Н2,ж, добавление металла, более тяжелого, чем оба компонента, повышает плотность топлива.

Из гидридов металлов особый интерес представляет ВеН2 и А1Н3.

Плотность этих веществ довольно высока и равна 0.63 и 1.48г/см3 соот­ветственно. Идеальный удельный импульс в пустоте топлива Н202 - ВеН2 при оптимальном соотношении компонентов составляет 4800 м/с. т. е. близок к удельному импульсу топлива F2 + H2. Это наиболее высокая характеристика для высококипящих топлив, горючее и окислитель которых являются индиви­дуальными веществами.

Вследствие высокой теоретической эффективности металлосодержащих топлив оправданным становится поиск решения вопросов их практического использования. Одной из важных проблем является проблема хранения и пода­чи металла в камеру сгорания. Важным также является поиск путей реализации высокого импульса в связи с потерями из-за неравновесного течения двухфаз­ной смеси в сопле, а также связанными с защитой камеры, от воздействия кон­денсированных частиц. Содержание конденсата (окислов алюминия, бериллия и др.) в продуктах сгорания при оптимальном соотношении компонентов со­ставляет до 40 % по массе, рис.27.





Рис.27

Гелеобразные топлива исследуют в связи с решением задачсоздания хранимой однородной суспензии металлов в компонентах топлива, увеличения срока хранения криогенных компонентов топлив в условияхнесовместимости, улучшения эксплуатационных характеристик топлив (гелирование способству-ет быстрому затуханию колебаний в баке) и т. д. Создание новыхгелеобразных топлив и комбинирование современных окислителей с гелеобразнымигорю­чими позволит существенно уменьшить размеры крупных ракет-носителей.


При получении гелеобразных топлив обычно используются химически активные или механические гелеобразователи. В качестве химически активных гслеобразователей применяют высшие жирные кислоты и их соли (мыла), вы­сокомолекулярные соединения (полимеры), тяжелые углеводороды. Механиче­скими гелеобразователями могут служить тонкоизмельченные металлы (разме-ром 0,8 ... 3 мкм) и их соединения, силикагель, сажа, глина и т.д.

Используя с загущенным органическими горючими наполнители, представляющие собой порошкообразный окислитель, и высокоэнергетические добавки, получают гелеобразные монотоплива. В загущенном состоянии моно­топлива похожи на твердые ракетные топлива, обладая, например, способ­ностью выдерживать большие перегрузки. В отличие от твердых ракетных топ­лив гелеобразные монотоплива могут прокачиваться по трубопроводам; их приготовление можно организовать непосредственно на стартовой позиции, отработка рецептур таких топлив происходит более быстрыми темпами и имеет более низкую стоимость, а возможности варьирования рецептуры гелеобраз­ных составов гораздо шире, так как их не нужно отверждать.