Национальная система спутниковой фиксированной службы России в настоящее время использует СР типа «Экспресс», а также «Ямал» различных модификаций.
2. Принципы построения и особенности ССС.
Виды орбит. Спутник связи может находиться на круговой или на эллиптической орбите. Соответственно центр Земли совпадает с центром круговой орбиты либо с одним из фокусов эллиптической орбиты (рис. 1).
Угол i между плоскостью орбиты и плоскостью экватора называют наклонением. При i=0 орбита называется экваториальной, при i=90° – полярной, остальные – наклонными. Круговые орбиты различаются наклонением и высотой Н3 над поверхностью Земли. Эллиптические орбиты – наклонением и высотами апогея А и перигея П над поверхностью Земли. Линия, соединяющая апогей и перигей, называется линией апсид. Поля тяготения Луны, Солнца, планет, магнитное поле Земли, несферичность Земли и другие возмущающие факторы вызывают изменение параметров орбиты во времени. Для наклонных эллиптических орбит эти изменения минимальны, если выбрать i=63,4°.
В ССС нашли применение орбиты двух типов: высокая эллиптическая типа «Молния» и геостационарная орбита. Первая получила название от советского спутника связи «Молния». Ее параметры: высота апогея около 40 тыс. км, высота перигея около 500 км, i≈63,4°. Апогей орбиты находится над северным полушарием. Период обращения ИСЗ–12 ч. За сутки ИСЗ совершает два оборота. Поэтому каждые сутки он виден в одних и тех же районах Земли в одно и то же время. Орбита, для которой период обращения ИСЗ кратен земным суткам, называется субсинхронной. Согласно второму закону Кеплера в районе апогея высокой эллиптической орбиты ИСЗ движется гораздо медленнее, чем у перигея. Сеанс связи проводят, когда ИСЗ движется по части орбиты, прилегающей к апогею. Он может продолжаться около 8 ч, поскольку в течение этого времени спутник на орбите типа «Молния» виден на всей территории СССР. Разместив на орбите три ИСЗ, можно поддерживать связь круглосуточно. Эти спутники перемещаются относительно ЗС, поэтому на последних приходится устанавливать подвижные антенны, следящие за ИСЗ.
Геостационарная орбита (ГО) – это экваториальная круговая орбита, для которой Н3=35786 км. Спутник, движущийся по этой орбите, называют геостационарным. Он вращается с той же угловой скоростью, что и Земля, и поэтому наблюдателю на Земле кажется неподвижным. Точку на земной поверхности, над которой ИСЗ, находится в зените, называют подспутниковой. Для геостационарного спутника траектория подспутниковой точки вырождается в точку на экваторе. Долгота этой точки определяет положение геостационарного ИСЗ. Связь через такой ИСЗ можно поддерживать с помощью неподвижных антенн ЗС. На самом деле часто приходится принимать во внимание сравнительно небольшие колебания положения ИСЗ, вызванные перечисленными выше возмущающими факторами. Под их влиянием подспутниковая точка начинает совершать колебания с суточной периодичностью. Через некоторое время траектория движения подспутниковой точки за сутки приобретает вид «восьмерки», вытянутой в направлении север-юг, с центром на экваторе. Через год размах этой восьмерки составит около ±1°. Из-за этого приходится периодически корректировать положение спутника на орбите.
Геостационарные спутники позволяют построить более дешевую и удобную в эксплуатации в сравнении с другими ИСЗ систему связи (достаточно одного ИСЗ, нужна неподвижная антенна ЗС и другие причины). Поэтому ГО очень часто отдают предпочтение. Такая орбита у Земли всего одна, и орбитальные позиции для ИСЗ на ней предоставляются по решению Всемирной административной конференции по радио (ВАКР). Занято более 100 позиций. Если точность поддержания по долготе геостационарного спутника не хуже ±1°, то на ГО можно разместить до 180 ИСЗ. По мере развития спутниковых систем связи требования к точности поддержания по долготе ужесточаются. У существующих ИСЗ она составляет от ±1° до ±0,1°.
Через геостационарный спутник не могут работать ЗС, расположенные в высокоширотных районах, так как они не видны с ИСЗ (рис. 2).
Для ЗС, расположенных на экваторе, геостационарный спутник находится в зените. Другими словами, угол места β (угол между направлениями на горизонт и на ИСЗ) составляет 90°. В этом случае путь сигнала в атмосфере Земли самый короткий. Если же расположить ЗС на широте 81°, то ее антенна должна быть направлена на горизонт, т. е. β –0. С уменьшением β путь сигнала в атмосфере становится длиннее. При этом увеличивается ослабление сигнала при распространении в свободном пространстве. Возрастает также ослабление сигнала в атмосферной влаге и шумовая температура антенны за счет шумового излучения атмосферы. Если же β <5°, то резко увеличивается влияние шумового излучения Земли. Поэтому на практике МККР рекомендует обеспечивать углы места не менее 3...5° на частотах до 6 ГГц и 10... 15° на частотах свыше 10 ГГц.
Территория, с которой виден ИСЗ при минимальных углах места, называется зоной видимости. Для геостационарного ИСЗ при β = 5° она располагается между 76° с.ш. и 76° ю.ш, а по долготе занимает примерно третью часть экватора (заштрихованная область на рис.2). Предположим, что на ИСЗ установлена общая приемопередающая антенна. Если ее максимум излучения ориентирован на центр Земли, т. е. антенна создает прямой луч, а ширина главного лепестка ДН около 173° (под таким углом видна Земля с геостационарного ИСЗ), то все станции, расположенные в зоне видимости, могут поддерживать связь через ИСЗ. Если же на ИСЗ установлена узконаправленная антенна, то она освещает на Земле только часть зоны видимости, так называемую зону покрытия (рис.3). Теперь связь через спутник может быть установлена только между ЗС, находящимися в зоне покрытия.
На рис. 12.2 была рассмотрена КС, у которой зоны видимости и зона покрытия совпадают. Такая КС имеет глобальную зону покрытия и глобальную антенну. Глобальные антенны предпочтительны в случаях, когда надо охватить связью большие территории, например в международных ССС, узконаправленные – при создании национальных ССС. Во втором случае антенна ИСЗ прицелена в определенную точку на земной поверхности, а не на центр Земли, т. е. она дает наклонный луч. Зона покрытия имеет форму, максимально приближенную к границам государства, района и т. п. На современных многофункциональных ИСЗ устанавливают вместе и те, и другие антенны, причем узконаправленные антенны могут иметь несколько лучей, образующих на Земле свои зоны покрытия. Они получили название многолучевых антенн (МЛА). Если зоны покрытия МЛА не перекрываются, то передачу во всех лучах можно вести на одной и той же частоте. Таким образом, МЛА допускают многократное применение одной полосы частот и позволяют за счет этого повысить эффективность использования ГО.
Часть зоны покрытия, на которой действительно предусмотрена установка ЗС, называют зоной обслуживания. Наиболее эффективны ССС, в которых зоны покрытия и обслуживания совпадают.
3.Тенденции технологии
Последние достижения технологии в области спутниковой связи говорят о больших потенциальных возможностях ССС в расширении пропускной способности каналов передачи, разработке и внедрении новых служб связи. Будущее ССС за широкополосными широковещательными приложениями и спутниковыми системами подвижной связи.
В ряды крупных консорциумов и организаций, ориентированных на геосинхронные спутники, активно вливаются новые участники, предлагающие услуги сетей подвижной связи и использующие низкоорбитальные спутниковые системы (LEO – Low Earth Orbit). Системы LEO, разрабатываемые рядом американских фирм, используют большое число легких спутников на орбитах ниже 2 тыс. км для организации услуг по передаче сообщений и речи, определению местонахождения и срочных коммуникаций между мобильными терминалами. В отличие от наземных сотовых сетей подвижной связи, в которых абонент последовательно перемещается через смежные соты небольшого размера, в системе LEO подобная «сота» ограничена лишь горизонтом Земли. Низкая орбита спутника резко сокращает задержку по сравнению с системами, ориентированными на геосинхронные орбиты спутников
В заключение отметим, что ССС постоянно и ревниво сравниваются с волоконно–оптическими сетями связи. Внедрение этих сетей ускоряется в связи с быстрым технологическим развитием соответствующих областей волоконной оптики, что заставляет задаться вопросом о судьбе ССС. Например, разработка и, главное, внедрение конкатенирующего (составного) кодирования резко уменьшает вероятность возникновения неисправленной побитовой ошибки, что, в свою очередь, позволяет преодолеть главную проблему ССС– туман и дождь.
4. КОСМИЧЕСКИЕ СТАНЦИИ
Космическая станция содержит ретранслятор и системы обеспечения: источники энергоснабжения, системы ориентации антенн (на Землю) и солнечных батарей (на Солнце), системы коррекции положения ИСЗ на орбите и др.
Аппаратура КС должна иметь минимальную массу и габариты, высокую надежность и потреблять малую мощность. Ретрансляторы КС, как правило, многоствольные. Они состоят из приемопередающей аппаратуры и антенн. Структурные схемы стволов ретранслятора подобны применяемым на ПРС РРЛ. В зависимости от схемы ствола различают ретрансляторы гетеродинного типа, ретрансляторы с одним преобразованием частоты и ретрансляторы с обработкой сигнала на борту. Кроме демодуляции и модуляции, на КС применяют и другие многообразные способы обработки сигнала. Например, при МДВР после демодуляции на КС может быть предусмотрено разделение каналов с последующим объединением их на новой основе. При этом сообщения, адресованные станции i всеми другими ЗС, объединяют и передают по линии «вниз» в одном пучке. В системах МДВР-КБ на борту происходит коммутация сигналов.