Смекни!
smekni.com

тичної статистики теоретичного аналізу теорії імовірності системного аналізу економетрії (стр. 2 из 3)

Fp=dx2/S2=5.445,

n

де dx2= Σ(x 1-x)2/(n-1).Оскільки Fрозр>Fтабл=1,95,то прийнята

i=1

модель адекватна експерементальним даним.

Для оцінки меж надійних інтервалів лінії регресії спочатку визначимо надійні інтервали здобутої лінійної моделі,

Dx1i=ta,kS/n1/2(1+(x1i-x1)2/dx12)1/2

а потімвиконаємо зворотній перехід за формулами :

Yi±DYi=exp(Y1i±DY1i).

Складемо таблицю1.

Визначимо автокореляцію за формулою:

n n

d= Σ(lt-lt-1)2/Σlt2=2.425.

t=2 t=1

Визначимо границі d-статистики: d1=1.16,dn=1.39.Оскільки виконується нерівність dn<d<4-dn ,то враховується гіпотеза про відсутність атокореляції.

Для оцінки меж надійних інтервалів прогнозу спочатку визначимо надійні інтервали здобутої лінійної моделі,

DX1p=ta,kS/n1/2(1+n+(X1i-X1)2/dx12)

а потім виконаємо зворотній перехід за формулами:

Yp±DYp=exp(Y1p±DY1p)

Складемо таблицю 2.

Таблиця 1.

t x(t) t1 x1 (t) x1r xr Dx1 xmin xvf[
1 9,51 0 2,2523 2,2002 9,0268 2,6461 0,6402 127,267
2 11,62 0,6931 2,4527 2,4137 11,1757 1,8811 1,7034 73,3196
3 11,22 1,0986 2,4177 2,5338 12,6626 1,4754 2,8958 55,371
4 15,22 1,3863 2,7226 2,6273 13,8362 1,228 4,0522 47,2427
5 13,99 1,6094 2,6383 2,696 14,8202 1,0767 5,0498 43,4978
6 15,18 1,7918 2,72 2,7522 15,6771 0,9922 5,8123 42,2844
7 14,98 1,9459 2,7067 2,7997 16,4396 0,9561 6,3193 42,7674
8 17,88 2,0794 2,8837 2,8408 17,13 0,9541 6,5974 44,4772
9 16,78 2,1972 2,8202 2,8771 17,763 0,9753 6,6978 47,1082
10 18,94 2,3026 2,9413 2,9096 18,349 1,0114 6,6738 50,4487
11 20,98 2,3979 3,0436 2,9389 18,8958 1,0568 6,5695 54,3499
12 15,71 2,4849 2,7543 2,9657 19,4092 1,1068 6,4169 58,7071
13 20,74 2,5649 3,0321 2,9904 19,8937 1,1598 6,2377 63,446
14 24,7 2,6391 3,2068 3.0132 20,3532 1,2138 6,0463 68,5134
15 20,78 2,7081 3,034 3,0345 20,7904 1,2678 5,8514 73,8702
16 20,74 2,7726 3,0321 3,0544 21,2079 1,3212 5,6585 79,4872
17 19,75 2,8332 2,9832 3,0731 21,6077 1,3736 5,4709 85,342

Таблиця 2.

t xlp(t) xp(t) Dxlp xpmin xpmax
19 3.1073 22.3610 7.1463 0.0176 28385.4
20 3.1231 22.7172 7.1565 0.0177 29131.4
21 3.1382 23.0612 7.1666 0.0178 29874.0

Відповідь.

З надійністю р=0,1 можна вважати, що експерементальним даним відповідає така математична модель:Yr=9.0268X0.3081.

Для tp=19 точкова оцінка прогнозу показника має значення Xp=22,36.З надійністю p=0,1прогноз показника буде набувати значення в інтервалі (0,0176;2838,4).

Для tp=20 точкова оцінка прогнозу показника має значення Xp=22,72.З надійністю p=0,1прогноз показника буде набувати значення в інтервалі (0,0177;29131,4).

Для tp=21 точкова оцінка прогнозу показника має значення Xp=22,36.З надійністю p=0,1 прогноз показника буде набувати значення в інтервалі (0,0178;29874,0).

Завдання 3.

Визначити параметри лінійної моделі залежності витрат на споживання С від рівня доходів D,збережень S та заробітної плати L.Оцінить коефіцієнти детермінації,автокореляції та перевірте показники на мультиколінеарність між факторами.Обчислення виконати на базі 13 статистичних даних певного регіону (C,D,S,L подані у тис $).

Дано:

І С(і) D(i) S(i) L(i)
1 9,08 10,11 12,29 9
2 10,92 12,72 11,51 8,03
3 12,42 11,78 11,46 9,66
4 10,9 14,87 11,55 11,34
5 11,52 15,32 14 10,99
6 14,88 16,63 11,77 13,23
7 15,2 16,39 13,71 14,02
8 14,08 17,93 13,4 12,78
9 14,48 19,6 14,01 14,14
10 14,7 18,64 1625 14,67
11 18,34 18,92 16,72 15,36
12 17,22 21,22 14,4 15,69
13 19,42 21,84 18,19 17,5

Рішення:

Припустимо, що між показником Ŷ і чинниками Х1 Х2 Х3 існує лінійна залежність Ŷ=А1Х12Х23Х3 .Знайдемо оцінки параметрів,використовуючи матричні операції.Запишеио систему нормальних рівнянь у матричній формі: [X]T[X]ā=[X]TY.Якщо помножити матричне рівняння зліва на матрицю [[X]T[X]]-1, то для оцінки параметрів вектора ā отримаємо формулу:

ā=[[X]T[X]]-1[X]Ty, звідки а1 =0,0603; а 2=0,151;а3=0,859.

Складемо таблицю:

І D(i) S(i) L(i) C(i) Cроз (i) 1
1 10,11 12,29 9 9,08 10,1954 1,1154
2 12,72 11,51 8,03 10,92 9,4018 -1,5182
3 11,78 11,46 9,66 12,42 10,7376 -1,6824
4 14,87 11,55 11,34 10,9 12,3803 1,4803
5 15,32 14 10,99 11,52 12,4768 0,9568
6 16,63 11,77 13,23 14,88 14,1429 -0,7371
7 16,39 13,71 14,02 15,2 15,1 -0,1
8 17,93 13,4 12,78 14,08 14,0809 0,0009
9 19,6 14,01 14,14 14,48 15,4418 0,9618
10 18,64 16,25 14,67 14,7 16,1774 1,4774
11 18,92 16,72 15,36 18,34 16,8579 -1,4821
12 21,22 14,4 15,69 17,22 16,9296 -0,2904
13 21,84 18,19 17,5 19,42 19,0939 -0,3261

Коефіцієнт множинної детермінації:

13 13

R2=1-Σ(yii)2/Σ(y-ỳ)2=0.863

I=1i=1

Визначимо автокореляцію за формулою:

13 13

d=Σ(lt–lt-1 )2/Σlt2=2.0531.

t=2 t=1

Оскільки значення d-статистики близьке до 2 то можна вважати автокореляцію відсутньою.Для визначення мультиколінеарності використаємо критерій Х2 . Розрахункове значення Х2 знаходимо за формулою:

Х2р=[n-1-1/6(2m+5)]ln│[X]T [X]│=3.1025

Для довірчої ймовірності р=0.95 і числа ступенів волі 1/2m(m-1)=3 X2=7.8.Оскільки розрахункове значення менше критичного,то можна вважати,що загальноі мультиколінеарності не існує.

Відповідь:

Коефіцієнт детермінації R2=0.863,автокореляція та загальна мультиколінеарність відсутні.

Завдання 4.

Проаналізуйте модель виробничої функції типу Кобба-Дугласа,що описує залежність між продуктивністю праці y=y/l та фондоозброєністю x=k/l з урахуванням впливу технічного прогресу у виробництво регіону.Оцініть параметри моделі,коефіцієнти детермінації та автокореляції за такими статистичними показниками Y ,k та L за 12 років.

T Y(t) k(t) L(t)
1 54,24 4,41 11,89
2 49,56 4,97 11,04
3 52,32 6,63 11,46
4 73,92 7,39 15,56
5 67,2 7,44 15,67
6 64,44 8,31 17,44
7 80,04 8,9 15,71
8 93,12 12,12 19,91
9 95,4 14,77 16,52
10 90,54 15,06 21,54
11 116,94 14,21 17,9

Рішення:

Виробничою функцією називають функцію,яка описує кількісну залежність причинно-наслідкових відносин між результатом економічного процесу і умовами його одержання,хоча б частина з яких керована.В загальному випадку функція Кобба-Дугласа має вигляд:ŷ=b0x1b1x2b2…xmbm,де ŷ -продуктивність ; x1, x2,…, xm –впливові фактори ;b0 -нормований множник ; b1, b2, bm -коефіціенти еластичності.

Припустимо ,що між показником у – продуктивність праці і фактором х- фондоозброєність існує стохастична залежність : ŷ=bx2 (виробнича регресія Кобба-Дугласа).для оцінки параметрів виробничої регресії приводимо її до лінійної форми. Після логарифмування і заміни величин Y1=Ln(y), X1=Ln(x) та b1=lnb отримаємо приведену лінійну регресію Y1= b1+a X1 . Оцінки параметрів і для цієї регресії визначаються за формулами:

n n n n n

a=(nΣX1i Y1i - Σ X1i Σ Y1i)/(n Σ X 21i -(Σ X1i)2) =0.3695

i=1 i=1 i=1 i=1 i=1

- -

b11-aΧ1=1.7655,b=exp(b1)=5.8444.

Складемо таблицю:

t Y(t) k(t) L(t) x=k/l x y y y
1 54.24 4,41 11,89 0,3709 -0,9918 1,5177 1,39896 4,0651
2 49.56 4,97 11,04 0,4502 -0,7981 1,5017 1,470543 4,3516
3 52.32 6,93 11,46 0,6047 -0,503 1,5185 1,579598 4,853
4 73.92 7,39 15,56 0,4749 -0,7446 1,5583 1,490325 4,4385
5 67.20 7,44 15,67 0,4748 -0,7449 1,4559 1,490214 4,438
6 64.44 8,31 17,44 0,4765 -0,7413 1,307 1,491533 4,4439
7 80.04 8,90 15,71 0,5665 0,5682 1,6282 1,555488 4,7374
8 93.12 12,12 19,91 0,6087 -0,4964 1,5427 1,582051 4,8649
9 95.40 14,77 16,52 0,8941 -0,112 1,7535 1,724102 5,6075
10 90.64 15,06 21,54 0,6992 -0,3579 1,4359 1,633232 5,1204
11 116.94 14,21 17,9 0,7939 -0,2309 1,8769 1,68017 5,3665

Коефіцієнт множинної детермінації