Fp=dx2/S2=5.445,
n
де dx2= Σ(x 1-x)2/(n-1).Оскільки Fрозр>Fтабл=1,95,то прийнята
i=1
модель адекватна експерементальним даним.
Для оцінки меж надійних інтервалів лінії регресії спочатку визначимо надійні інтервали здобутої лінійної моделі,
Dx1i=ta,kS/n1/2(1+(x1i-x1)2/dx12)1/2
а потімвиконаємо зворотній перехід за формулами :
Yi±DYi=exp(Y1i±DY1i).
Складемо таблицю1.
Визначимо автокореляцію за формулою:
n n
d= Σ(lt-lt-1)2/Σlt2=2.425.
t=2 t=1
Визначимо границі d-статистики: d1=1.16,dn=1.39.Оскільки виконується нерівність dn<d<4-dn ,то враховується гіпотеза про відсутність атокореляції.
Для оцінки меж надійних інтервалів прогнозу спочатку визначимо надійні інтервали здобутої лінійної моделі,
DX1p=ta,kS/n1/2(1+n+(X1i-X1)2/dx12)
а потім виконаємо зворотній перехід за формулами:
Yp±DYp=exp(Y1p±DY1p)
Складемо таблицю 2.
Таблиця 1.
t | x(t) | t1 | x1 (t) | x1r | xr | Dx1 | xmin | xvf[ |
1 | 9,51 | 0 | 2,2523 | 2,2002 | 9,0268 | 2,6461 | 0,6402 | 127,267 |
2 | 11,62 | 0,6931 | 2,4527 | 2,4137 | 11,1757 | 1,8811 | 1,7034 | 73,3196 |
3 | 11,22 | 1,0986 | 2,4177 | 2,5338 | 12,6626 | 1,4754 | 2,8958 | 55,371 |
4 | 15,22 | 1,3863 | 2,7226 | 2,6273 | 13,8362 | 1,228 | 4,0522 | 47,2427 |
5 | 13,99 | 1,6094 | 2,6383 | 2,696 | 14,8202 | 1,0767 | 5,0498 | 43,4978 |
6 | 15,18 | 1,7918 | 2,72 | 2,7522 | 15,6771 | 0,9922 | 5,8123 | 42,2844 |
7 | 14,98 | 1,9459 | 2,7067 | 2,7997 | 16,4396 | 0,9561 | 6,3193 | 42,7674 |
8 | 17,88 | 2,0794 | 2,8837 | 2,8408 | 17,13 | 0,9541 | 6,5974 | 44,4772 |
9 | 16,78 | 2,1972 | 2,8202 | 2,8771 | 17,763 | 0,9753 | 6,6978 | 47,1082 |
10 | 18,94 | 2,3026 | 2,9413 | 2,9096 | 18,349 | 1,0114 | 6,6738 | 50,4487 |
11 | 20,98 | 2,3979 | 3,0436 | 2,9389 | 18,8958 | 1,0568 | 6,5695 | 54,3499 |
12 | 15,71 | 2,4849 | 2,7543 | 2,9657 | 19,4092 | 1,1068 | 6,4169 | 58,7071 |
13 | 20,74 | 2,5649 | 3,0321 | 2,9904 | 19,8937 | 1,1598 | 6,2377 | 63,446 |
14 | 24,7 | 2,6391 | 3,2068 | 3.0132 | 20,3532 | 1,2138 | 6,0463 | 68,5134 |
15 | 20,78 | 2,7081 | 3,034 | 3,0345 | 20,7904 | 1,2678 | 5,8514 | 73,8702 |
16 | 20,74 | 2,7726 | 3,0321 | 3,0544 | 21,2079 | 1,3212 | 5,6585 | 79,4872 |
17 | 19,75 | 2,8332 | 2,9832 | 3,0731 | 21,6077 | 1,3736 | 5,4709 | 85,342 |
Таблиця 2.
t | xlp(t) | xp(t) | Dxlp | xpmin | xpmax |
19 | 3.1073 | 22.3610 | 7.1463 | 0.0176 | 28385.4 |
20 | 3.1231 | 22.7172 | 7.1565 | 0.0177 | 29131.4 |
21 | 3.1382 | 23.0612 | 7.1666 | 0.0178 | 29874.0 |
Відповідь.
З надійністю р=0,1 можна вважати, що експерементальним даним відповідає така математична модель:Yr=9.0268X0.3081.
Для tp=19 точкова оцінка прогнозу показника має значення Xp=22,36.З надійністю p=0,1прогноз показника буде набувати значення в інтервалі (0,0176;2838,4).
Для tp=20 точкова оцінка прогнозу показника має значення Xp=22,72.З надійністю p=0,1прогноз показника буде набувати значення в інтервалі (0,0177;29131,4).
Для tp=21 точкова оцінка прогнозу показника має значення Xp=22,36.З надійністю p=0,1 прогноз показника буде набувати значення в інтервалі (0,0178;29874,0).
Завдання 3.
Визначити параметри лінійної моделі залежності витрат на споживання С від рівня доходів D,збережень S та заробітної плати L.Оцінить коефіцієнти детермінації,автокореляції та перевірте показники на мультиколінеарність між факторами.Обчислення виконати на базі 13 статистичних даних певного регіону (C,D,S,L подані у тис $).
Дано:
І | С(і) | D(i) | S(i) | L(i) |
1 | 9,08 | 10,11 | 12,29 | 9 |
2 | 10,92 | 12,72 | 11,51 | 8,03 |
3 | 12,42 | 11,78 | 11,46 | 9,66 |
4 | 10,9 | 14,87 | 11,55 | 11,34 |
5 | 11,52 | 15,32 | 14 | 10,99 |
6 | 14,88 | 16,63 | 11,77 | 13,23 |
7 | 15,2 | 16,39 | 13,71 | 14,02 |
8 | 14,08 | 17,93 | 13,4 | 12,78 |
9 | 14,48 | 19,6 | 14,01 | 14,14 |
10 | 14,7 | 18,64 | 1625 | 14,67 |
11 | 18,34 | 18,92 | 16,72 | 15,36 |
12 | 17,22 | 21,22 | 14,4 | 15,69 |
13 | 19,42 | 21,84 | 18,19 | 17,5 |
Рішення:
Припустимо, що між показником Ŷ і чинниками Х1 Х2 Х3 існує лінійна залежність Ŷ=А1Х1+А2Х2+А3Х3 .Знайдемо оцінки параметрів,використовуючи матричні операції.Запишеио систему нормальних рівнянь у матричній формі: [X]T[X]ā=[X]TY.Якщо помножити матричне рівняння зліва на матрицю [[X]T[X]]-1, то для оцінки параметрів вектора ā отримаємо формулу:
ā=[[X]T[X]]-1[X]Ty, звідки а1 =0,0603; а 2=0,151;а3=0,859.
Складемо таблицю:
І | D(i) | S(i) | L(i) | C(i) | Cроз (i) | 1 |
1 | 10,11 | 12,29 | 9 | 9,08 | 10,1954 | 1,1154 |
2 | 12,72 | 11,51 | 8,03 | 10,92 | 9,4018 | -1,5182 |
3 | 11,78 | 11,46 | 9,66 | 12,42 | 10,7376 | -1,6824 |
4 | 14,87 | 11,55 | 11,34 | 10,9 | 12,3803 | 1,4803 |
5 | 15,32 | 14 | 10,99 | 11,52 | 12,4768 | 0,9568 |
6 | 16,63 | 11,77 | 13,23 | 14,88 | 14,1429 | -0,7371 |
7 | 16,39 | 13,71 | 14,02 | 15,2 | 15,1 | -0,1 |
8 | 17,93 | 13,4 | 12,78 | 14,08 | 14,0809 | 0,0009 |
9 | 19,6 | 14,01 | 14,14 | 14,48 | 15,4418 | 0,9618 |
10 | 18,64 | 16,25 | 14,67 | 14,7 | 16,1774 | 1,4774 |
11 | 18,92 | 16,72 | 15,36 | 18,34 | 16,8579 | -1,4821 |
12 | 21,22 | 14,4 | 15,69 | 17,22 | 16,9296 | -0,2904 |
13 | 21,84 | 18,19 | 17,5 | 19,42 | 19,0939 | -0,3261 |
Коефіцієнт множинної детермінації:
13 13
R2=1-Σ(yi-ŷi)2/Σ(y-ỳ)2=0.863
I=1i=1
Визначимо автокореляцію за формулою:
13 13
d=Σ(lt–lt-1 )2/Σlt2=2.0531.
t=2 t=1
Оскільки значення d-статистики близьке до 2 то можна вважати автокореляцію відсутньою.Для визначення мультиколінеарності використаємо критерій Х2 . Розрахункове значення Х2 знаходимо за формулою:
Х2р=[n-1-1/6(2m+5)]ln│[X]T [X]│=3.1025
Для довірчої ймовірності р=0.95 і числа ступенів волі 1/2m(m-1)=3 X2=7.8.Оскільки розрахункове значення менше критичного,то можна вважати,що загальноі мультиколінеарності не існує.
Відповідь:
Коефіцієнт детермінації R2=0.863,автокореляція та загальна мультиколінеарність відсутні.
Завдання 4.
Проаналізуйте модель виробничої функції типу Кобба-Дугласа,що описує залежність між продуктивністю праці y=y/l та фондоозброєністю x=k/l з урахуванням впливу технічного прогресу у виробництво регіону.Оцініть параметри моделі,коефіцієнти детермінації та автокореляції за такими статистичними показниками Y ,k та L за 12 років.
T | Y(t) | k(t) | L(t) |
1 | 54,24 | 4,41 | 11,89 |
2 | 49,56 | 4,97 | 11,04 |
3 | 52,32 | 6,63 | 11,46 |
4 | 73,92 | 7,39 | 15,56 |
5 | 67,2 | 7,44 | 15,67 |
6 | 64,44 | 8,31 | 17,44 |
7 | 80,04 | 8,9 | 15,71 |
8 | 93,12 | 12,12 | 19,91 |
9 | 95,4 | 14,77 | 16,52 |
10 | 90,54 | 15,06 | 21,54 |
11 | 116,94 | 14,21 | 17,9 |
Рішення:
Виробничою функцією називають функцію,яка описує кількісну залежність причинно-наслідкових відносин між результатом економічного процесу і умовами його одержання,хоча б частина з яких керована.В загальному випадку функція Кобба-Дугласа має вигляд:ŷ=b0x1b1x2b2…xmbm,де ŷ -продуктивність ; x1, x2,…, xm –впливові фактори ;b0 -нормований множник ; b1, b2, bm -коефіціенти еластичності.
Припустимо ,що між показником у – продуктивність праці і фактором х- фондоозброєність існує стохастична залежність : ŷ=bx2 (виробнича регресія Кобба-Дугласа).для оцінки параметрів виробничої регресії приводимо її до лінійної форми. Після логарифмування і заміни величин Y1=Ln(y), X1=Ln(x) та b1=lnb отримаємо приведену лінійну регресію Y1= b1+a X1 . Оцінки параметрів і для цієї регресії визначаються за формулами:
n n n n n
a=(nΣX1i Y1i - Σ X1i Σ Y1i)/(n Σ X 21i -(Σ X1i)2) =0.3695
i=1 i=1 i=1 i=1 i=1
- -
b1=Υ1-aΧ1=1.7655,b=exp(b1)=5.8444.
Складемо таблицю:
t | Y(t) | k(t) | L(t) | x=k/l | x | y | y | y |
1 | 54.24 | 4,41 | 11,89 | 0,3709 | -0,9918 | 1,5177 | 1,39896 | 4,0651 |
2 | 49.56 | 4,97 | 11,04 | 0,4502 | -0,7981 | 1,5017 | 1,470543 | 4,3516 |
3 | 52.32 | 6,93 | 11,46 | 0,6047 | -0,503 | 1,5185 | 1,579598 | 4,853 |
4 | 73.92 | 7,39 | 15,56 | 0,4749 | -0,7446 | 1,5583 | 1,490325 | 4,4385 |
5 | 67.20 | 7,44 | 15,67 | 0,4748 | -0,7449 | 1,4559 | 1,490214 | 4,438 |
6 | 64.44 | 8,31 | 17,44 | 0,4765 | -0,7413 | 1,307 | 1,491533 | 4,4439 |
7 | 80.04 | 8,90 | 15,71 | 0,5665 | 0,5682 | 1,6282 | 1,555488 | 4,7374 |
8 | 93.12 | 12,12 | 19,91 | 0,6087 | -0,4964 | 1,5427 | 1,582051 | 4,8649 |
9 | 95.40 | 14,77 | 16,52 | 0,8941 | -0,112 | 1,7535 | 1,724102 | 5,6075 |
10 | 90.64 | 15,06 | 21,54 | 0,6992 | -0,3579 | 1,4359 | 1,633232 | 5,1204 |
11 | 116.94 | 14,21 | 17,9 | 0,7939 | -0,2309 | 1,8769 | 1,68017 | 5,3665 |
Коефіцієнт множинної детермінації