Смекни!
smekni.com

Модель атома Резерфорда і Бора (стр. 3 из 3)

3.2.Квантові числа.

Уважний розгляд атомних спектрів показує, що лінії, обумовлені переходом між квантовими енергетичними рівнями, насправді розщеплені на більш тонкі, тобто на підоболонки, кожна з своїм енергетичним рівнем. Ці електронні підоболонки отримали назву за виглядом відповідних ліній в атомному спектрі:

s- підоболонка названа за”різкою” (sharp) s-лінією

р-підоболонка - за “головною” (principal) р-лінією

d-підоболонка - за ”дифузною” (diffuse) d-лінією

f-підоболонка - за “фундаментальною” (fundamental) f-лінією

s- підоболонка складається з однієї s-орбіталі.

Р-підоболонка складається з трьох р-орбіталей

d-підоболонка складається з п’яти d-орбіталей

f-підоболонка складається з семи f-орбіталей

Наявність у електрона особливої властивості - спіна, також зумовлює розщеплення спектру. Таким чином, енергетичний рівень електрона в атомі визначається чотирма характеристиками: оболонкою, підоболонкою, орбіталлю та спіном. Кожній з цих характеристик відповідає певне квантове число.

Кожен електрон має свій індивідуальний набір квантових чисел, яким він відрізняється від інших електронів даного атома.

Електронна конфігурація елемента - це запис розподілу електронів в його атомах по оболонках, підоболонках та орбіталях. Для визначення конкретної електронної конфігурації елемента в стаціонарному стані є три правила:

Принцип заповнення. Електрони в стаціонарному стані атома заповнюють орбіталі у відповідності підвищення орбітальних енергетичних рівнів. Нижчі за енергією орбіталі завжди заповнюються першими.

Наприклад :
Водень 1H 1s1

¯

Принцип заборони Паулі. На будь-якій орбіталі може знаходитись не більше двох електронів і лише в тому випадку, якщо в них різнонапрямлені спіни.

Наприклад:
1s 2s
Літій 3Li 1s2 2s1­¯¯

Правило Гунда. Заповнення орбіталей однієї підоболонки починається по одному електрону з паралельними спінами, і тільки після того, як неспарені електрони займуть всі орбіталі, може проходити заповнення орбіталей парами електронів з протилежними спінами.

Наприклад:
1s 2s 2p
Нітроген 7N 1s22s22p3¯­¯­¯¯¯

3.3. Сучасні уявлення про будову ядра

1. Ядром називається центральна частина атома, у якій зосереджена практично вся маса атома і його позитивний електричний заряд. Всі атомні ядра складаються з елементарних часток: протонів і нейтронів, що вважаються двома зарядовими станами однієї частинки - нуклона. Протон має позитивний електричний заряд, що дорівнює по абсолютній величині заряду електрона. Нейтрон не має електричного заряду.

2. Зарядом ядра називається величина Zе, де е - величина заряду протона, Z - порядковий номер хімічного елемента в періодичній системі Менделєєва, дорівнює числу протонів у ядрі. В даний час відомі ядра з Z від Z = 1 до Z = 107. Для всіх ядер, крім і деяких інших нейтронодефіцітних ядер Nі, де N - число нейтронів у ядрі. Для легких ядер N/Z » 1; для ядер хімічних елементів, розташованих наприкінці періодичної системи, N/Z » 1,6.

3. Число нуклонів у ядрі A=N+Z називається масовим числом. Нуклонам (протону і нейтрону) приписується масове число, рівне одиниці, електрону - нульове значення А.

Ядра з однаковими Z, але різними А називаються ізотопами. Ядра, що при однаковому А мають різні Z, називаються ізобарами. Ядро хімічного елемента позначається X, де Х - символ хімічного елемента.

Усього відомо близько 300 стійких ізотопів хімічних елементів і більш 2000 природних і штучно отриманих радіоактивних ізотопів.

4. Розмір ядра характеризується радіусом ядра, що має умовний зміст через розмитість границі ядра. Емпірична формула для радіуса ядра м, може бути пояснена як пропорційність об’єму ядра числу нуклонів у ньому.

Густина ядерної речовини складає 1017 кг/м3 і постійна для всіх ядер. Вона значно перевершує густину звичайних речовин.

5. Розподіл електричного заряду протонів по ядру в загальному випадку несиметрично. Мірою відхилення цього розподілу від сферично симетричного є квадрупольний електричний момент ядра Q. Якщо щільність заряду вважається скрізь однакової, то Q визначається тільки формою ядра.

Висновок

1. Уподібнення атома планетній системі робилося ще на початку XX століття. Але цю модель було важко сполучити з моделями електродинаміки, і вона була залишена, уступивши місце моделі Томсона. Однак зроблені у 1900-тих роках дослідження привели до підтвердження планетарної моделі.

2. Резерфорд запропонував свою схему будови атома: у центрі атома знаходиться позитивне ядро, навколо якого по різним орбіталям обертаються негативні електрони. Доцентрові сили, що виникають при їхньому обертанні утримують їх на своїх орбіталях і не дають їм відокремитись. Ця модель атома легко пояснює явище відхилення a- часток, якщо відомо що розміри ядра й електронів дуже малі в порівнянні з розмірами всього атома.

3. Теорія Бора зробила величезний вклад в розвиток сучасного уявлення про будову атома, підійшовши, з одного боку, до розкриття законів спектроскопії і поясненню механізму випромінювання, а з іншого боку - до з'ясування структури окремих атомів і встановленню зв'язку між ними. Однак залишалося ще багато явищ у цій області, пояснити які теорія Бора не могла.

... У далекому минулому філософи Древньої Греції припускали, що вся матерія єдина, але здобуває ті чи інші властивості в залежності від її «сутності». Завдяки великим ученим минулого століття, ми наближаємося до істинного розуміння будови матерії, але з чого насправді вона складається повністю ще невідомо нікому.

Література

  1. М.Л. Глiнка. Загальна хiмiя. - К.:Вища школа, 1982.- 608с.
  2. М.А. Тамаров. Неорганическая химия. - М.:Медицина, 1974.- 480 с.
  3. В.В. Григор`єва та iн. Загальна хiмiя. - К.: Вища школа, 1991. - 431 с.
  4. Ахметов Н.С. Неорганическая химия. - 2-е изд. – М.: Высшая школа, 1975. – 670с.
  5. Кемплбел Дж. Современная общая химия : В3-х т. –М.: Мир, 1991.