Смекни!
smekni.com

Мікроскопія (стр. 1 из 4)

П. Енгель, Г. Клінгеле

Растрова

електронна

мікроскопія.

Руйнування

КИЇВ-2000

Будова металів.

1.1. Кристалічна структура.

Більшість технічних металічних матеріалів є полікристалічними, тобто складаються з багатьох окремих кристалів, що примикають одне до одного без зазорів.

Кристали в полікристалах, на відміну від вільно вирощених, не мають правильної геометричної форми і називаються полікристалітами, або зернами. Їх спостерігають на спеціально підготованому і протравленому шлифі за допомогою оптичного мікроскопу. Діаметри зерен можуть мати розміри від декількох мікрометрів до декількох міліметрів; границі між ними називають границями зерен. Всередині кожного зерна атоми розміщуються в правильному геометричному порядку, який можна ілюструвати на моделях просторових граток (елементарних комірок). На схемі мал. 1 розміри гратки в порівнянні з розмірами зерна надто великі; в дійсності період гратки складає близько 0,00001 діаметра зерна.

Мал.1. Схематичне зображення структури полікристалічного металічного сплаву наприкладі сталевої заклепки:

а- металографічний шліф заклепки; на площі в 1мм2 знаходиться декілька сотен зерен; б- структура металу (1,2- домішкові атоми заміщення і занурення відповідно; 3- крайова дислокація; 4- некогерентні виділення; 5- когерентні виділення; 6- тугоплавкі домішкові включення; 7- лінії ковзання; 8- виділення по границям зерна; 9- елементарна комірка a-заліза; 10- гвинтова дислокація; 11- плівкові виділення по границях зерен; 12- вакансія; D3-діаметр зерна, наприклад, 50 мкм » 50000нм » 500000А0.

В зернах завжди є дефекти кристалічної будови, основними з яких є дислокації. Розрізняють крайові та гвинтові дислокації. Метали можуть розчиняти домішкові атоми, які як би “вбудовуються” в гратку металу. Коли домішковий атом займає місце атома основного металу у вузлі гратки, утворюється твердий розчин заміщення. Коли домішковий атом вбудовується між основними атомами гратки, відбувається створення твердого розчину занурення. В обох випадках виникають локальні спотворення у будові гратки. Незайняті місця у кристалічній гратці носять назву вакансій.

1.2. Фази і виділення.

Під фазою розуміють кристаліти з однаковим хімічним составом та кристалічною структурою. Чисті метали завжди є однофазними. Сплави також можуть бути однофазними, але в більшості випадків вони складаються з декількох фаз. Різні фази утворюються в процесі охолодження із розплаву чи в результаті наступної термічної обробки внаслідок зміни розчинності елементів зі зміною температури. Якщо гратка металу вміщує більше домішкових атомів, ніж може розчинитися при даній температурі, то з такого пересиченого твердого розчину виділяються різного ступеня дисперсності частинки, що називаються фазами виділень. Когерентні виділення характеризуються спряженням їх гратки з граткою основного металу - матриці. Некогерентні виділення утворюють з матрицею міжфазні границі.

Переважним місцем утворення фаз виділень є границі зерен. Виделення по границях зерен можуть або утворювати суцільні оболонки навкруги зерен, або розміщуватися в цих місцях уривками. Тугоплапвкі фази, які у вигляді твердих частинок знаходяться в металічному розплаві, в зернистій структурі, що утворюється при затвердінні , розподілені хаотично.

1.3. Пластична деформація.

Металічні матеріали здатні піддаватись пластичній деформації, тобто можуть при зовнішній дії змінювати свою форму. При цьому в зернах виникає взаємний зсув окремих їх об”ємів чи шарів вздовж визначених напрямів, площин кристалічної гратки (мал. 2, а). Проте атоми в зсунутих атомних рядах зміщуються не одночасно, а послідовно. Цей процес і визначає виникнення і проходження крайових і гвинтових дислокайій крізь гратку.

Мал.2. Пластична деформація ковзанням (а) та двійникуванням (б) .

1- сходинки ковзання; 2- площини ковзання; 3- двійниковий прошарок.

За допомогою оптичного мікроскопу та РЕМ результати ковзання можна спостерігати у вигляді ліній ковзання та сходинок на полірованій поверхні зразка. Ці ліній та сходинки обмежують зсунуті одна відносно одної зони всередині зерен. В кожному даному кристаліті розвиток ковзання знаходиться в залежності від характеру ковзання в сусідньому. Різниця в орієнтації окремих зерен проявлюється у зміні напрямку ліній ковзання в сусідніх кристалитах.

Інша можливість пластичної деформації (окрім ковзання) за рахунок утворення двійнків показана на мал.2.б. При двійникуванні кристаліт ділиться площиною двійникування на дві частини, причому кристалічна гратка однієї його частини стає дзеркальним відображенням гратки другої частини.

Методи дослідження.

2.1. Растрова електронна мікроскопія.

Принцип

Електронний промінь у вигляді тонкого пучка електронів (зонд, діаметр пучка<10 нм) сканує зразок по рядках точку за точкою та синхронно передає сигнал на кінескоп. При попаданні електронного променя у якусь точку зразка відбувається вібивання з його матеріалу вторинних електронів та відбитих електронів. Яскравість зображення точки на екрані кінескопу залежить від кількості “виходу” електронів.Високий “вихід” електронів із зразка дає світлу точку зображення на екрані, малий “вихід” відповідає темній точці. В інтервалі між цими значеннями “виходів” електронів спостерігаються сірі точки різніх відтінків.

Електронній зонд являє собою тонкий пучок електронів приблизно циліндричної форми, при дії його на зразок збуджуються однаково малі плями електронного збудження. Це пояснює добру глибину різкості зображення при растровій електронній мікроскопії.

Мал.3. Схема растрового електронного електронного

мікроскопа.

1- катод; 2- анод; 3- електронний промінь; 4- кон-

денсорна лінза I; 5- конденсорна лінзаII; 6- остання

конденсорна лінза; 7- відхиляючі котушки; 8- блок

регулювання збільшення; 9- фотопомножувач; 10-

апертурна діафрагма; 11- зразок; 12- сцинтилятор;

13- світловод; 14- відхиляючі пристрої; 15- пристрої

для спостереження; 16- зйомка; 17- посилювач сиг-

налу; 18- вакуумна система.

Первинний електронний промінь (зонд) виникає в вакуумній колoні (електронна пушка) растрого електронного мікроскопу (РЕМ). Елнктрони вилітають з катода, що накопичує, і прискорюються електричним полем з напругою 1-50 кВ; промінь фокусується трьома електромагнітними конденсорними лінзами та за допомогою відхиляючих котушок скануються по зразку.

Електрони, що випромінюються зразком, викликають в сцинтиляторі світові спалахи (фотони). Швидкі пружньорозсіянні (відбиті) електрони з високою енергією без додаткового підводу енергії потрапляють в сцинтилятор; вторинні електрони з нізькою енергією при русі до сцинтилятора отримують прискорення від приложення електричного поля. Світлові спалахи залишають вакуумну колонку крізь світловод і у фотопомножувачі, що примикає до нього, перетворюються в електричні імпульси. За допомогою останніх після подальшого посилення можна регулювати яскравість екрану електронної трубки (мал.3). Отримане таким чином зображення поверхні є об”ємним і може бути пояснене так, наче об”єкт освітлюється сцинтилятором, що встановлений на боці об”єкту, а спостереження ведеться з боку прямування первинного електронного променя.

Дія первинного електронного променя

Падаючі на об”єкт електрони з високою енергією відхиляються і уповільнюються атомами твердого тіла.Ці процеси відбуваються всередині зони проникнення електронів (мал.4). При цьому із зразка можуть вилітати електрони, рентгенівські кванти, фотони і виділятись тепло.

Мал.4. Взаємодія електронного променя потужністю 20 кеВ з мідним зразком:

а- проникнення електронів у мідний зразок; б- розподілення характеристичного К- випромінювання міді; в- схема розположення зон різного типу випромінювань (1- центр тяжіння відбитого випромінення; 2- центр тяжіння вторинного електронного випромінювання у плямі з діаметром<10 нм; 3- центр тяжіння характеристичного рентгенівського випромінювання; 4- область оберненого розсіяння (відбиття); 5- критична далекість дії, збудження характеристичної взаємодії; 6- далекість дії електронів; збудження гальмуючого випромінювання).

Відбиті електрони: електрони з високою енергією, які висилаються з відносно протяжної області об”єкту навколо первинного електронного променя; вони виходять з великої глибини (мал. 4,а).

Вторинні електрони: електрони з малою енергією (<50еВ), які залишають поверхню у випадку, коли їхня енергія вище, ніж робота виходу (2-6 еВ). Вторинні електрони переважно утворюються тільки в тонкому шарі матеріалу (1-10 нм) всередині плями, на яку впав первинний промінь.

В більшості випадків для отримання зображення за допомогою РЕМ використовуються вторинні електрони. Вони дозволяють отримувати краще розділення (<10 нм), ніж у випадку відбитих електронів.

Оже-електрони

На фоні неперервного розподілення енергій вторинних електронів в області енергій від п”ятидесяти до декількох сот електронвольт (при строго фіксованих для кожного елементу значеннях енергії) виникають максимуми, які виникають завдяки Оже-електронам (Оже-переходам). Хоч ці максимуми і слабко виражені, їх можна спостерігати за допомогою спеціальних детекторних систем і використовувати для аналізу зовнішніх поверхневих атомних шарів. Завдяки цьому з”являється можливість застосування Оже-електронної спектроскопії (ОЕС) в (РЕМ). Досліджувана товщина шару - 2-3 нм.

К в а н т и р е н т г е н і в с ь к о г о в и п р о м і н ю в а н н я.

Неперервне гальмуюче випромінювання виникає за рахунок розсіяння падаючих електронів атомними ядрами. Воно охоплює всі значення, аж до самої енергії падаючих первинних електронів. Характеристичние випромінювання виникає у випадку, коли електрони, що падають, викликають збудження мишені за рахунок перескоку електронів на внутрішніх оболонках атомів. Цей вид випромінювання використовується для мікроаналізу. Утворення рентгенівського характеристичного випромінювання концентрується в основному в об”ємі, який для важких елементів є напівсферою, а для легких- грушевидним (мал.4). Доля гальмуючого випромінювання з малою енергією може утворюватися на кінці шляху електрона (далекість дії) (мал.4,а і в). Однак для отримання характеристичного випромінювання енергія електрона повинна бути більша, ніж енергія збудження характеристичного випромінювання. Ця умова виконується тільки до критичної глибини проникнення.