Камерон в своих работах 60-х гг. предполагал, что Солнечная система возникла в результате сжатия (коллапса) межзвездного облака с массой
Начиная с 70-х гг. 20 в. лабораторные анализы метеоритов, к-рые на протяжении всей своей истории не подвергались сильному нагреву, указывали на присутствие в них вещества, напоминающего, по-видимому, межзвездную пыль. Его присутствие в количестве хотя бы неск. % теперь уже не вызывает сомнений. Согласно Д. Клейтону (США, 1978 г.), почти вся пыль в первичном протопланетном облаке имела межзвездное происхождение.
Определения изотопного состава земных образцов и метеоритов, а также лунных образцов показали его высокую однородность (за исключением следов фракционирования изотопов при образовании отдельных образцов). Это указывает на хорошую перемешанность осн. массы протопланетного вещества. Однако ряд обнаруженных изотопных аномалий в нек-рых метеоритах свидетельствует о том, что в протопланетном облаке присутствовали порции вещества, не перемешанные с осн. массой вещества. По-видимому, в протопланетном облаке не было полного испарения межзвездной пыли, при к-ром различия изотопного состава были бы сглажены. Еще в 1960 г. исследования изотопного состава Xe из метеоритов выявили присутствие в нем дочернего продукта распада - короткоживущего радиоактивного изотопа 129I, а в 1965 г. - продуктов распада 244Pu (периоды полураспада
Если исходить из идеи о сохранении межзвездных пылинок, понятие "интервал формирования" теряет свой смысл. Конденсация твердого веществав и образование пылинок начинаются еще на стадии разлета продуктов взрыва сверхновой, и количество продуктов распада короткоживущих изотопов, присутствующих в метеоритном веществе, зависит от доли свежей пыли, инжектированной в межзвездное облако либо перед его сжатием (коллапсом), либо в уже сформировавшееся допланетное облако. Камерон и С. Труран (США, 1970 г.) предложили, что взрыв близко расположенной сверхновой не только инжектировал свежее вещество в протосолнечную туманность, но и содействовал ее сжатию.
Достижения астрофизики и планетологии в 70-х гг. 20 в.: первые расчеты коллапса, учитывающие вращение сжимающихся протозвезд; исследование областей совр. звездообразования в Галактике; снимки поверхностей планет Солнечной системы и их спутников, изобилующих ударными кратерами, - наглядно свидетельствуют о правильности общих основ совр. теории формирования планет.
Наряду с исследованиями, определяющими генеральную линию развития планетной космогонии, существуют представления, не пользующиеся широким признанием. Так, Альвен разрабатывает с 40-х гг. 20 в. гипотезу о том, что образование планетной системы на всех этапах определялось в основном эл.-магн. силами. Для этого молодое Солнце должно было обладать очень сильным магн. полем, в тысячи раз более сильным, чем современное. Газы межзвездного облака, падавшего к Солнцу под действием его притяжения, постепенно ионизовались и по мере ускорения своего падения под влиянием магн. поля Солнца переходили от падения к обращению вокруг Солнца. Первыми на больших расстояниях от Солнца должны были ионизоваться металлы и др. вещества, обладающими низкими потенциалами ионизации, а последним ближе всего к Солнцу должен был ионизоваться водород. Хим. состав планет дает обратную картину распределения водорода и более тяжелых элементов. Вследствие этого и искусственности ряда др. предположений гипотеза Альвена почти не имеет сторонников.
Англ. ученый М. Вульфсон в 60-70-х гг. 20 в. пытался развивать гипотезу, согласно к-рой приобретение Солнцем протопланетного вещества объяснялось сочетанием приливного воздействия и захвата: Солнце захватило сгустки вещества, вырванного его притяжением из пролетавшей мимо разреженной протозвезды. Как и гипотеза Джинса, эта схема имеет много слабых мест и не пользуется популярностью.
Данные, накопленные астрофизикой, говорят о том, что звезды, в т.ч. и звезды солнечного типа, образуются в газово-пылевых комплексах с массой
Начавшее сжиматься массивное облако, участвующее в общем вращении Галактики, не может сжаться до высокой плотности из-за большого момента вращения. Поэтому оно стремится распасться на отдельные фрагменты. Часть момента вращения при этом переходит в момент относительного движения фрагментов. Процесс последовательной фрагментации, сопровождаемый беспорядочными (турбулентными) движениями, ударными волнами, запутыванием магн. полей, приливным взаимодействием фрагментов, сложен и понят далеко не достаточно. Однако эволюция изолированного фрагмента, имеющего массу