Смекни!
smekni.com

Роздільна здатність моніторів принтерів сканерів (стр. 2 из 3)

Колір плашкових зображень задають номером кольору в реєстрі кольорів - палітрі (мал. 3.19). Палітра може бути стандартною, для посилання на яку досить назвати її на ім'я, або власною палітрою того чи іншого зображення. В останньому випадку палітра повинна додаватися до зображення. Виходячи з особливостей двійкового кодування, палітри складаються не більше, ніж з 256 кольорів. Тоді для кодування кольору використовують один байт. Можливі економніші палітри, наприклад, 4 біти - 16 кольорів. У випадку 16 кольорів одного байту досить для розміщення інформації про два колірні елементи.

Одноколірні півтонові зображення (gray picture), прикладом яких можуть служити чорно-білі фотографії - ще один тип зображень. Півтоновими їх називають тому, що вони містять необмежену кількість відтінків сірого кольору - від чисто білого до чорного.

Як це прийнято в цифрових технологіях, необмежена кількість відтінків сірого при цифровому кодуванні замінюється обмеженою кількістю їх кодів. Роздільна здатність за відтінками сірого визначає кількість значень відтінків, які ми здатні закодувати. Якщо обмежитися 4 бітами, то зображення міститиме 4 відтінки сірого. Якщо для кодування використовується один байт, то матимемо 256 різних значень відтінків сірого. Якщо позначити відтінок, що відповідатиме чорному кольору через нуль, а білому - через одиницю, цифрові коди повинні давати дискретну лінійну залежність з кроком h8 = 1:255 = 0,0039215 H 0,03.

Скільки рівнів сірого потрібно для реалістичного відтворення зображень? Вважається, що око розрізняє не більше від 64 рівнів. Значення кроку h6 складе h6 = 1:64 = 0,016 H 0,02. На мал. 3.20 подані приклади зображень з різною роздільною здатністю відтінків сірого. Для цифрового кодування відтінків сірого кольору в принципі можна було б обмежитися 6 бітами. Але потрібно пам'ятати про похибки, що виникнуть при цифровому кодуванні, а особливо при скануванні зображення (див. відповідний розділ). А тому прийнято використовувати звичайне байтове кодування, що дає 256 відтінків.

Цікаво, що роль темних і світлих тонів, як і їх зорове сприйняття істотно відрізняються. Спочатку зупинимося на так званій проблемі гамма-корекції. Справа в тому, що яскравість люмінофору не пропорційна напрузі, підведеній до катодної трубки. Це степенева залежність виду , де значення і залежно від типу пристрою складає біля 0,45 і називається показником нелінійності датчика. Тоді обернена до і величина має значення приблизно 2,2, а відповідний графік залежності G від I має вигляд параболи. Проблему нелінійності добре ілюструє мал. 3.21, на якому зображені графіки прямої пропорційної і квадратичної залежностей ( ). При парабола проходить під прямою, тобто . Це значить, що інтенсивність світла менша, ніж при прямо пропорційній залежності, а тому ділянки тіні були б темнішими, ніж вони мали б бути. При графіки перетинаються, а далі . Ділянки світла світліші, ніж треба.

Гамма-корекція монітора полягає у виведенні на екран монітора замість величини інтенсивності G величини Gcor, що розраховується як , де Gmax - максимально можливе значення інтенсивності (білий колір). Проста гамма-корекція виконується апаратно. Складніші види корекції будуть розглянуті пізніше.

Друга проблема полягає в нелінійному характері зорового сприйняття. На мал. 3.22 зображена шкала сірих півтонів або "сірий клин". Від прямокутника до прямокутника інтенсивність змінюється на величину 0,05. В області світла прямокутники розрізняються чітко, в області тіні не розрізняються зовсім.

Сказане ще раз підтверджує необхідність точнішого кодування півтонів, принаймні достатнього для розрізнення в області максимального сприйняття. Закодовані в цифровому вигляді сірі зображення перетворюються на зображення в градаціях сірого кольору.

Нарешті останній тип зображення - це повноколірне півтонове зображення. Таке зображення можна кодувати в колірній моделі RGB, використовуючи по 256 відтінків кожного з кольорів. Всього це дасть 256 х 256 х 256 = 16,8 млн. кольорів. Це так званий 24-бітовий колір або стандарт true color.

Насправді стільки кольорів не потрібно. Вважається, що око сприймає 128 кольорів при 30 значеннях насиченості та 50 значеннях яскравості. Це складе 128 х 30 х 50 = 192 тис. кольорів. Якщо зображення не містить тонких колірних переходів, то високої якості зображення можна досягти, обмежившись лише 5 бітами на колірну складову або 32 768 кольорами. На цьому ірунтується так званий 15-бітовий стандарт high color, що забезпечує досить якісне кольорове зображення. На малюнку подано зображення відповідно в 24-, 8- і 4-х бітовому кольорах

3.2.5. Співвідношення роздільної здатності та об'єму файлу.

Звичайно просторова роздільна здатність може змінюватися від 20 до 2400 ppi. Програми створення зображень влаштовано так, що розміри зображення можна вибирати вибирати в дюймах, сантиметрах або пікселах. Якщо ми встановили роздільну здатність 72 ppi, то кожен квадратний дюйм зображення міститиме 72 х 72 = 5184 піксела, при здатності 300 ppi - 300 х 300 = 90 000 пікселів.

Для штрихового малюнка кількість пікселів зображення співпадає з кількістю бітів, необхідних для його кодування. Для зображення в градаціях сірого зображення кількість пікселів дасть його розмір в байтах. Для повноколірного півтонового зображення в моделях RGB, HSV або CIE Lab кількість пікселів множимо на 3, а в моделі CMYK - на 3.

Наприклад, для кодування екрану 640 х 480 кольорового монітора в 24-бітовому форматі RGB потрібно 640 х 480 х 3 = 920 Кб, а монохромного монітора 920 Кб : 3 = 307 Кб. Для екрану 1024 х 768 ця цифра зростає до 1024 х 768 х 3 = 2304 Кб = 2,25 Мб. Це говорить про те, що при такій роздільній здатності відео пам'яті в 2Мб вже не достатньо. Розміри відеопамяті при різних роздільних здатностях наведено у таблиці

Роздільна здатність 256 кольорів (8-біт) 65,000 кольорів (16-біт, high color) 16.7 млн. кольорів (24-біт, true color)
640x480 512K 1 MB 1 MB
800x600 512K 1 MB 2 MB
1,024x768 1 MB 2 MB 4 MB
1,152x1,024 2 MB 2 MB 4 MB
1,280x1,024 2 MB 4 MB 4 MB
1,600x1,200 2 MB 4 MB 6 MB

Тепер оцінимо пам'ять, виходячи з розмірів роздруку графічного файлу. Візьмемо зображення, що вимагає стандартного аркушу формату А4 в колірній моделі CMYK. Нехай роздільна здатність складе 300 ppi, тоді 1 кв. дюйм міститиме 90 000 пікселів, а все зображення (8,3 х 11,7) кв. дюйми х 90 000 х 4 = 34 812 142 байт = 33 Мб.

Проведені розрахунки показують, що графічні зображення можуть вимагати значних обсягів пам'яті, а тому їх використання вимагає ретельного вибору роздільної здатності та колірної моделі.

Роздільна здатність сканера

Цифрове кодування художніх оригіналів виконується за допомогою сканерів, цифрове фотографування як оригіналів, так і живої натури - за допомогою цифрових фотокамер. Цифрове кодування виконує дві основні функції. По-перше, розбиває неперервне зображення на точки - піксели. По-друге, кожній точці приписує (три) цифрові колірні характеристики, а у випадку монохромних зображень, характеристику яскравості.

Попри деякі конструктивні відмінності, принцип дії сканера, як і цифрової камери, полягає в освітленні оригіналу або живої натури за допомогою штучного або сонячного світла та вимірюванні за допомогою світлочутливого сенсора яскравості світлового потоку, пропущеного прозорим або відсвіченого непрозорим оригіналом чи живою натурою. Сонячне світло використовується виключно цифровими камерами, штучне освітлення всіма видами цифрувальної апаратури. Принцип кольорового сканування - той же, що і монохромного. Тільки в останньому випадку кожен піксел створюється одним сенсором, а в першому - трьома за кількістю колірних каналів. Сенсори ті ж самі: тільки на шляху світла до сенсора знаходиться відповідна лінза, що виділяє яскравість потрібної колірної складової - червоної, синьої або зеленої.

Кожен сенсор перетворює величину освітленості в електричну напругу, яка поступає на вхід аналогово-цифрового перетворювача. Останній перетворює її в цифровий код, що поступає на вхід процесору цифрової обробки сигналів. Процесор виконує первинну обробку, стиснення та передачу цифрових даних у пам'ять. Колірна роздільна здатність безпосередньо залежить від яскравості світла. Вона визначається глибиною кольору сканера. Звичайно це 24 біти, але все частіше використовуються сканери з глибиною кольору 36 (12 біт на колір). Підвищена точність дає можливість уникнути похибок цифрового кодування. Кількість сенсорів, що припадає на одиницю довжини оригіналу, називається оптичною роздільною здатністю сканера. Вона визначає просторову роздільну здатність зображення. існують прийоми підвищення оптичної роздільної здатності шляхом апаратної або програмної інтерполяції. Звичайно сканери забезпечують 300, 600 або 1200 ppi. Схема цифрової обробки зображень подана на мал.

За будовою розрізняють сканери барабанні та планшетні. Вони відрізняються конструктивно способами розміщення та пересування освітлювача, сенсорів та оригіналів. Барабанні сканери - це сканери суперкласу і, природно, супервартості, призначені для надзвичайно якісних робіт. Ми обмежимося розглядом лише планшетних сканерів.

Оригінал освітлюється потужною флуоресцентною лампою або лампою з холодним катодом. Останні довше в процесі експлуатації тримають характеристики білого світла, а крім того не перегрівають сканер. Лінійка світлочутливих елементів фіксує яскравість світла, пропущеного або відсвіченого, уздовж однієї лінії. Кожен світлочутливий елемент створює один піксел в лінії. Потім лінійка пересувається вздовж оригіналу на величину свого кроку і процес повторюється знову. Оптична роздільна здатність в планшетних сканерах ділиться на горизонтальну та вертикальну. Горизонтальна залежить від двох параметрів: кількості датчиків у лінійці та ширини лінійки. Вертикальна залежить від кроку і може бути вищою від горизонтальної. Тоді довіряємо горизонтальній, бо вертикальна, швидше всього, буде інтерпольованою. Зауважимо, що вже при роздільній здатності 600 ppi та ширині лінійки 8,5 дюйма ( стандарт А4) необхідно 5100 сенсорів, а при роздільній здатності 1000 ppi - 8500 сенсорів на лінійці. Ясно, що роздільна здатність планшетного сканера не може зростати безмежно.