Принцип функциональной системы. В 30-е годы идеи, связанные с принципом и теорией функциональной системы, развивал акад. П. К. Анохин. Он придал законченный вид идее рефлекторной дуги И. П. Павлова, характерный для систем с обратной связью. Им был выдвинут и разработан тезис об обратной афферентации— своеобразном замыкании обратной связи организма через окружающую среду — и подчеркнут сложный характер обработки информации в цепи обратной афферентации. Фундаментальным является и положение П. К. Анохина о роли результата как фактора, образующего функциональную систему. Как он справедливо отмечает, все определения систем, бытующие даже сейчас в кибернетике и общей теории связи, являются неполными вследствие отсутствия связи работы системы с требуемым конечным результатом. Если И. П. Павлов, выдвинув принцип динамического уравновешивания организма со средой, указал на конечную естественную цель, достигаемую организмом, обитающим в данной среде и приспосабливающимся к ней, то теория функциональной системы П. К. Анохина раскрывает, как организм может достигнуть этой конечной цели, какие механизмы должны для этого действовать. Любопытно отметить, что идеи П. К. Анохина, связанные с анализом биосистем, т. е. наиболее сложных систем, опережают идеи, возникающие в кибернетике на основе анализа и усложнения технических систем, в частности необходимость замыкания обратной связи обоснована им еще в 1935 г. Обратная аф-ферентация являет собой пример наиболее сложной обработки информации, для которой в технических системах нынче используются вычислительные машины;
выдвинутое им положение об акцепторе действия предвосхитило идеи оптимального и критериального управления.
Рассмотрим основные положения общей теории функциональных систем организма. Различные этапы формирования системы фактически подчинены решению следующих вопросов: какой результат должен быть получен; когда именно должен быть получен результат;
какими механизмами должен быть получен результат;
как система убеждается в достаточности полученного результата. П. К. Анохин придает результату возможность организовать распределение возбуждений в системе в соответствующем направлении. Таким образом, все формирование системы подчинено получению определенного полезного результата; недостаточный результат может целиком реорганизовать систему и сформировать новую, с более совершенным взаимодействием компонентов, дающим достаточный результат.
П. К. Анохин дает следующее определение понятия системы. [17]: «...системой можно назвать только такой комплекс избирательно вовлеченных компонентов, у которых взаимодействие и взаимоотношение приобретают характер взаимосодействия компонентов на получение фиксированного полезного результата».
В свою очередь результат благодаря обратной аф-ферентации имеет возможность реорганизовать систему, создавая такую форму взаимодействия между ее компонентами, которая является наиболее благоприятной для получения именно запрограммированного результата. Таким образом, результат рассматривается как неотъемлемый и решающий компонент системы, как инструмент, создающий упорядоченное взаимодействие между всеми другими ее компонентами.
Функциональные системы организма складываются из динамически мобилизуемых структур в масштабе целого организма. Наличие результата системы как определяющего фактора для формирования функциональной системы и наличие специфического строения структурных аппаратов, дающих возможность немедленной мобилизации объединения их в функциональную систему, говорит о том, что системы организма всегда функциональны. Это значит, что функциональный принцип выборочной мобилизации структур является доминирующим. Поэтому такая система и была названа функциональной [15].
С вопросом структурного состава функциональной системы связан и вопрос об иерархии систем. Говоря о составе функциональной системы, следует иметь в виду, что всякая данная функциональная система, взятая для исследования, неизбежно находится где-то между тончайшими молекулярными системами и наиболее высоким уровнем системной организации.
П. К. Анохин делает следующий вывод о составе иерархии: все функциональные системы, независимо от уровня своей организации и от количества составляющихих компонентов, имеют принципиально одну и ту же функциональную архитектонику, в которой результат является доминирующим фактором.
Главной чертой каждой функциональной системы является ее динамичность. Структурные образования, составляющие функциональные системы, обладают исключительно подвижной мобилизуемостью. Именно это свойство систем и дает им возможность быть пластичными, внезапно менять свою архитектонику в поисках запрограммированного полезного результата.
Применение системы как инструмента в научных исследованиях затруднено настолько, что многие исследователи не изучают внутреннее строение системы, а ограничиваются исследованием на уровне «черного ящика». Между тем вскрытие внутренних закономерностей действия системы, ее узловых механизмов позволило бы добиться главного в исследовательском процессе: удержания в руках целого, когда анализируются части этого целого [1б].
Функциональная система всегда гетерогенна. Она состоит из определенного количества узловых механизмов, каждый из которых занимает надлежащее место и является специфическим для всего процесса формирования функциональной системы. Вскрытие этих механизмов, составляющих внутреннюю архитектонику системы, приблизит исследователей к самой решающей цели системного подхода вообще — обеспечить органическое единство в исследовательском процессе системного уровня функционирования с индивидуальной характеристикой каждого дробного элемента или механизма, принимающего участие в этом функционировании.
Одним из достоинств общей теории функциональных систем является разработка модели системы с четко отработанным внутренним строением или, по выражению П. К. Анохина, внутренней архитектоникой. Такая внутренняя архитектоника, выраженная в физиологических понятиях, является непосредственным инструментом для практического применения функциональной системы в исследовательской работе.
Рассмотрим узловые специфические механизмы, представляющие собой внутреннюю архитектонику системы (рис. 5).
Афферентный синтез. Биосистема, даже простой иерархии, сама на основе внутренних процессов прини мает решение о том, какой результат нужен в данный момент ее приспособительной деятельности. Вопрос этот решается именно на стадии афферентного синтеза.
Выдвигаются четыре решающих компонента афферентного синтеза, которые должны быть подвергнуты одновременной обработке с одновременным взаимодействием на уровне отдельных нейронов: доминирующая на данный момент мотивация; обстановочная афферентация, также соответствующая данному моменту; пусковая афферентация и, наконец, память
Основным условием афферентного синтеза является
Рис. 5. Общая характеристика функциональной системы (по П. К. Анохину).
одновременная встреча всех четырех составляющих этой стадии функциональной системы. Микроэлектродный анализ, микрохимическое исследование и другие формы аналитического исследования нейрона в момент встречи на нем упомянутых выше четырех возбуждений показали, что этот процесс поддерживается и облегчается рядом динамических процессов нервной системы. Это прежде всего выходящая активация, сопутствующая афферентному синтезу и предшествующая принятию решения [88, 141]. Сюда же относятся процесс корково-подкорковой реверберации [147] и процесс центробежного повышения возбудимости вовлеченных в афферентный синтез рецепторов.
Афферентный синтез, приводящий организм к решению вопроса, какой именно результат должен быть получен в данный момент, обеспечивает постановку цели, достижению которой и будет посвящена вся дальнейшая логика системы. Принятие решения является следующим узловым механизмом функциональной системы. Афферентный синтез, подчиняясь доминирующей на данный момент мотивации, осуществляет подбор тех значений элементов системы, при которых возбуждения избирательно направляются к мышцам, совершающим нужное действие. Любое принятие решения после окончания афферентного синтеза является выбором наиболее подходящих значений элементов, которые должны составить рабочую часть системы. Эти значения дают возможность экономно осуществить именно то действие, которое должно привести к запрограммированному результату.
Принятие решения — это в высшей степени конденсированный процесс, в котором одновременно обрабатывается на основе доминирующей мотивации вся пришедшая в мозг афферентная информация, производится непрерывное сопоставление этих результатов с прошлым ответом и переводятся результаты этой обработки на афферентные пути, соответствующие распределению возбуждений для совершения нужного акта, обеспечивающего получение необходимых результатов.
Формирование акцептора результатов действия. Акцептор результатов действия является весьма сложным аппаратом. По сути он должен сформировать определенные нервные механизмы, которые позволяют не только прогнозировать признаки необходимого в данный момент" результата, но и сличать их с параметрами реального результата, информация о которых приходит к акцептору результатов действия благодаря обратной афферента-ции. Именно этот аппарат дает единственную возможность организму исправить ошибку поведения или довести несовершенные поведенческие акты до совершенных.