Рассмотренные выше условия изменения энтропии (неопределенности) биосистемы обладают общей следующей особенностью: влияние среды оценивается лишь по изменению неопределенности или уровня организации биосистемы.
Более четко принцип самоорганизации был сформулирован в 1962 г. В. М. Глушковым. При этом рассматривалось взаимодействие системы (в том числе и биосистемы)" со средой и изменение неопределенности системы как функция этого взаимодействия. Пусть Q представляют собой сигналы среды, воспринимаемые биосистемой как обучающая последовательность. Среди всех обучающих последовательностей есть последовательность Q0, при которой энтропия биосистемы максимальна. Вообще говоря, обучающую последовательность Q0 можно считать тем первоначальным контактом, который биосистема установила с данной средой. Понятно, что если биосистема способна обучаться, то каждый последующий контакт со средой может уменьшать неопределенность системы. Тогда изменение неопределенности
DHQ=HQ-HQ0 (1.21)
является величиной отрицательной.
По В. М. Глушкову, способность системы к самоорганизации тем выше, чем больше величины S или Z. В отличие от оценок абсолютной и относительной организации "в данном случае рассматривается изменение неопределенности не на фоне Нm — максимально возможной неопределенности, связанной с внутренними структурными и функциональными возможностями, а на фоне Hm — максимальной неопределенности, вскрываемой в данной биосистеме определенными воздействиями среды. Такой подход позволяет косвенно через параметры биосистемы судить о свойствах среды и о способности данной биосистемы обучаться в данной среде.
Таким образом, принцип самоорганизации может пониматься следующим образом: система обладает способностью к самоорганизации в данной среде, если в результате многократного взаимодействия с ней неопределенность системы по отношению к максимальной неопределенности, проявленной системой в данной среде, убывает.
Более прямое сравнение функционирования биосистемы в среде возможно, если рассматривать однотипные показатели среды и системы; например, сложность Hm и относительную организацию R. Такой подход позволил сформулировать принцип адекватности биосистемы и среды [201. При этом из всей совокупности параметров, по которым биосистема и среда взаимодействуют, были выбраны два наиболее важных: степень сложности и уровень организации. Для биосистем, действующих в среде постоянной сложности и организации, справедлив статический принцип адекватности: чтобы успешно функционировать в среде, сложность и организация биосистемы должны быть адекватными сложности и организации среды. Условно этот принцип можно выразить следующим образом:
где индекс е означает принадлежность к среде, s — к системе.
Рассматривая свойства биосистем в связи с функционированием их в среде, А. М. Молчанов пишет: «Биологические объекты сложны не только внутренне. Они функционируют в сложной, нередко быстро меняющейся среде. Более того, есть серьезные основания думать, что сама сложность их строения носит «компенсаторный» характер. Они именно потому и сложны, что в ответ на любое воздействие среды развивают внешнюю защитную реакцию таким образом, чтобы сохранить максимально неизмененной свою внутреннюю структуру» [92]. Таким образом, «компенсация» воздействий среды есть один из возможных способов установления адекватности между биосистемой и средой.
Установление адекватности между системой и средой по сложности организации является конкретизацией принципа уравновешивания организма со средой И. П. Павлова.
Используем теперь идею И. П. Павлова о динамическом уравновешивании применительно к взаимодействию системы и среды. Сформулируем принцип динамической адекватности: при изменении сложности и организации среды биосистема стремится достичь нового уровня адекватности по сложности и организации со средой с минимизацией времени, затрат вещества и энергии, т. е.
Hsm(t)»Hem(t); Rs(t)»Re(t). (1.26)
В динамическом принципе адекватности указывается на оптимизацию таких важнейших параметров жизне деятельности биосистемы, как время, вещество и энергия. При установлении адекватности по сложности и организации поведение биосистемы основывается на сложной форме обратной афферентации и работе акцептора действия, а изменение показателей сложности и организации может подчиняться принципу наименьшего взаимодействия.