З електрохімічних найбільш поширеними в імуноаналізі є імуноферментні сенсори, в яких вимірюється не концентрація Аг, а тільки концентрація продуктів дії ферментів , які вивільняються при взаємодії Ат-Аг , і на базі результатів робляться висновки про концентрацію Аг.
Широко застосовуються непрямі потенціометричні методи тестування імунних реакцій. В цих методах тестування опосередковане або застосуванням ферментних міток, або використанням ліпосом з електроактивним вмістом,або застосуванням білків, кон’югованих з іонофорами(2).
Перелічені варіанти практично повністю охоплюють все різноманіття методів, де використовуються імуносенсори.
ІІІ. Біосенсори, що містять інтактні клітини.
Сенсори , які містять цілі клітини називаються цілоклітинними біосенсорами(36). Нижче перелічені властивості інтактних клітин, що можуть бути використані в біосенсорах:
а) Клітини чутливі до цілої низки речовин.
б) Ферменти, що містяться insitu мають оптимальну біологічну активність, на відміну
від ферментів invitro.
в) Низька ціна препаратів (можливість росту в культурі).
Майже всі відомі цілоклітинні біосенсори містять прості бактеріальні чи водорослеві клітини; тваринні та рослинні клітини більш складні і набагато менш стійкі invitro.
Відомо, що всі цілоклітинні біосенсори базуються на електрохімічних перетворювачах.За допомогою таких біосенсорів можна визначити амінокислоти (наприклад, аргінін), пестициди та інші інгібітори. Нещодавно стало відомо про біосенсор базований на оптичному перетворювачі в поєднанні з пігментованими клітинами(36).
Суттєвими недоліками клітинних біосенсорів є:
а)Швидка загибель клітин, що витрачають електрони, отримані в процесі життєдіяльності,
на ініціацію сигналу.
б)Втрата переносників сигналу - медіаторів через дифузію(2).
Нещодавно українськими вченими був розроблений кондуктометричний біосенсор, що базується на метилотрофних дріжджах Candidaboidinii76, за допомогою якого можна визначати етанол(40).
IV.Біосенсори, що містять молекулярні рецептори.
Біосенсорів цього типу відомо порівняльно мало, в основному, через проблему абсолютної ізоляції та стабілізації молекул в надзвичайному середовищі. Біосенсор такого типу може мати оптичний перетворювач і базуватися, наприклад, на ацетилхоліновому рецепторі нікотину або на електрохімічному перетворювачі і базуватися на зміні потенціалу мембрани, внаслідок обміну подібних речовин (наприклад, рибофлавіну та його аналогу (F), де чутливість сенсора може складати від 0.1 до 2×10-6 М рибофлавіну).
Подальший прогрес можливий в цій галузі біосенсорів лише за підримки молекулярної біології у підвищенні якості і стабільності рецепторів, що можна використовувати invitro(2).
V. Нуклеінові кислоти в біосенсорах.
Біосенсори, які містять одноланцюгові молекули ДНКзвичайно називають “ДНК-
-зондами” чи “ДНК-пробами”, вони використовуються при виявленні таких генетичних хвороб, як серповидна клітинна анемія, фенілкетонурія та ін.(Малюнок 3).
1. Схеметичне зображення біодатчика на основі одноланцюгових нуклеінових кислот.
ATGCCTAG
ковалентно закріплений на носії
фрагмент нуклеінової кислоти
Носій кислоти
Біодатчик
2. Дослідна проба, що містить одноланцюгові фрагменти нуклеїнової кислоти.
CTAAATCCGA
TACGGATC= радіоактивна мітка
ACTTG
3. Аналіз проби. ACTTG
TACGGATC=
ATGCCTAG
розпізнавання та утворення
комплементарного дуплексаCTAAATCCGA
Малюнок 3.Принципіальна схема біодатчика на основі одноланцюгової
НК.Значні успіхи досягнуті при виявленні патогенних мікроорганізмів за допомогою “ДНК-проб” в біологічних рідинах, харчових продуктах, оточуючому середовищі. В таблиці 3 наведені різні віруси,бактерії та інші патогенні мікроорганізми, які можна визначити за допомогою “ДНК-проб”(21).
Таблиця 3.
Віруси; Вірус гепатита В
Вірус гепатита А
Цитомегаловірус
Аденовіруси
Вірус герпеса
Ентеровіруси
Вірус папіломи людини
Ротавірус
Вірус HTLVI
Вірус HIV
Паповіруси
Риновіріси
Бактерії; Шигелла
Сальмонелла
Легіонелла
Кампілобактер
Золотистий стафілокок
Інші збудники; Трипаносома
Найпростіші з роду Plasmodium
Шистосома
Хламідія
Кандіда
Біосенсори на основі рідких кристалів суперспіральних молекул ДНК викликають особливу увагу через можливість існування кільцевих молекул ДНК у різних формах, що різняться за своїми властивостями, до того ж існування цих форм цілком залежить від зовнішніх факторів. Під дією ферментів (нуклеаз та рестриктаз) рощеплюється суперспіральнаупаковка молекул і відбувається перебудова кристалів, що проявляється аномальною оптичною активністю дослідної дисперсії (Малюнок 4.). Цей біосенсор використовується для визначення агентів, що руйнують суперспіральну ДНК(41).
1.Формування дисперсної фази з суперспіральних молекул ДНК в полімер-вмісному
розчині
Суперспіральна ДНК Рідкокристалічна дисперсія
з суперспіральних молекул ДНК
Р Р Р
Р Р Р
Р Р Р
2.Розщеплення суперспіральних молекул ДНК ферментом призводить до утворення
холестеричних рідких кристалів
Р Р Р Р Р Р Р Р Р
Р Р Р Р Р Р Р Р Р
Р Р Р Р Р Р Р Р Р
Біодатчик Проміжна рідкокристалічна Холестерична дисперсна
фаза фаза із молекул ДНК
Малюнок 4. Принципіальна схема біодатчика на основі суперспіральної кільцевої ДНК в
полімервмісному розчині
Серед широкого різноманіття біосенсорів хочу ще окремо згадати світлочутливі біосенсори, як яскравий приклад використання біологічного матеріалу.Світлочутливі біосенсори-це прилади, що містять в якості робочого матеріалу ті чи інші фоточутливі біологічні структури (макромолекули, фоторецепторні мембрани) і призначені для реєстрації, перетворювання та зберігання оптичної інформації.
Відправним пунктом та стимулом до розробки та створення таких сенсорів слугують дані про високу квантову ефективність, чутливість та широкий динамічний діапазон природніх світлочутливих систем, що беруть участь в таких процесах, як зір, фотосинтез та ін.
Важливу роль в створенні молекулярних приладів відіграють біомолекули, а саме, природні хромофор-білкові комплекси, що містяться в фоторецепторних та енергоперетворюючих мембранах.
Наявність у цих комплексів цілого ряда унікальних властивостей: фотохромізма, електрохромізма, електрогенного характеру функціональних реакцій, природньої поляризації компонентів та ін. - дозволяє намітити шляхи для використання препаратів зазначених комплексів для цілей біотехнології, біоелектроніки та при розробці приладів корисного використання сонячної енергії, сенсорних елементів систем перетворення та реєстрації інформації(42).
Розділ другий.Перетворювачі різних типів, що використовуються в біосенсорах.
І.Електрохімічні біосенсори.
Електрохімічні біосенсори являють собою електрохімічні перетворювачі в поєднанні з ферментами (але не завжди). Ферментні електроди були найпершими описані в літературі та розроблені на комерційному доступному рівні(10).
Ферментні реакції можна вимірювати використовуючи амперометричні, потенціометричні та кондуктометричні біосенсори. Амперометричні біосенсори вимірюють електричний струм, коли напруга виникає між робочим електродом та електродом порівняння. З хімічного боку також впливають окисно-відновні реакції, що викликають струм. Найбільш поширенним прикладом такого роду аналізу є визначення глюкози з використанням глюкозоксидази:
Глюкоза + Кисень ——Глюконолактон + Перекис водню
Зміну концентрації кисню можна визначити за допомогою кисневого електроду Кларка, на якому кисень проникає крізь напівпроникну мембрану, щоб відновитися на платиновому електроді. Навпаки, зміна концентрації перекису водню спостерігається при окисленні на платиновому електроді. Обидва ці підходи мають фундаментальні недоліки. Атмосферний кисень може вносити похибки, до того ж важливим є не допустити впливу інших електроактивних компонентів.
Щоб уникнути похибок, в ферментних реакціях, використовують альтернативні джерела електронів. Ці акцептори електронів відомі як медіатори, що переносять електрони між реагентами та електродом(5). Прикладом такого медіатору слугує залізо(FeFe3+):
Глюкоза + 2Fe+ ——— Глюконолактон + 2Fe + 2H+ Залізо окислюється на аноді, щоб відновитися в реакції. Сенсор не є чутливим до кисню. Найвища межа лінійного ряду може бути підвищена використанням мембрани, яка б лімітувала рівень дифузії глюкози до електрода так, що б кінетика зворотньої реакції не залежала від константи спорідненості (Km) ферменту. Принцип медіаторного амперометричного біосенсору було використано для ряду аналізів, вимірюючих спирт(1), СО(35), D–галактозу, гліколат та L–амінокислоти(14). Також є дані про використання амперометричного методу для імуноаналізу з використанням ферментного підсилення. Цей імуноаналіз побудований по типу “сендвіча”, де друге антитіло приєднано до лужної фосфатази. Лужна фосфатаза претворює NADP на NAD. NAD включається до відновлювального циклу, вмикаючи дегідрогеназу та діафоразу. Відновлювальний цикл відновлює медіатор ферріцианід, який визначається амперометрично(6).
Оксидоредуктази часто вимогають нікотинаміднуклеотиди в якості кофакторів. Ці дорогі, нестабільні, розчинні компоненти роблять структуру простих, надійних біосенсорів непрактичною.