Задача 11. Найти производную.
11.1.
lny= 1/2*ln2arctgx
y'= (arctgx)1/2*ln(arctgx)(lnarctgx)/(arctgx*(1+x2))
11.2.
lny= ln2sin√x
y'= ((sin√x)lnsin√x*ctg√x*lnsin√x)/√x
11.3.
lny= 5exlnsinx
y'= (sinx)5e^x(5exlnsinx+5exctgx)
11.4.
lny= exlnarcsinx
y'= (arcsinx)e^x(exlnarcsinx+ex/√(1-x2))
11.5.
lny= 3xlnlnx
y'= (lnx)3^x(3xln3lnlnx+3x/(xlnx))
11.6.
lny= arcsinxlnx
y'= xarcsinx(lnx/√(1-x2)+arcsinx/x)
11.7.
lny= 2exlnctg3x
y'= 2(ctg3x)2e^x(exlnctg3x-3ex/(ctg3x*sin23x))
11.8.
lny= etgxlnx
y'= xe^tgx((etgxlnx)/cos2x+etgx/x)
11.9.
lny= 4exlntgx
y'= (tgx)4e^x(4exlntgx+ 4ex ) = (tgx)4e^x(4exlntgx+ 4ex ) =
tgxcos2x sinxcosx
11.10.
lny=exlncos5x
y'= (cos5x)e^x(exlnco5x-5exsin5x)= ex(cos5x)e^x(lncos5x-5tg5x)
cos5x
11.11.
lny= 8ln2(xsinx)
y'= 16(xsinx)8ln(xsinx)ln(xsinx)(sinx+xcosx)
11.12.
lny= chxln(x-5)
y'= (x-5)chx(shxln(x-5)+chx/(x-5))
11.13.
lny= tgxln(x3+4)
y'= (x3+4)tgx(ln(x3+4)/cos2x+(3x2tgx)/(x3+4))
11.14.
lny= sinx3lnx
y'= xsinx^3(3x2cosx3lnx+(sinx3)/x)
11.15.
lny= shxln(x2-1)
y'= (x2-1)shx(chxln(x2-1)+(2xshx)/(x2-1))
11.16.
lny= ctgxln(x4+5)
y'= (x4+5)ctgx(-(ln(x4+5))/sin2x+(4x3ctgx)/(x4+5))
11.17.
lny= 5x/2*lnsinx
y'= (sinx)5x/2(2,5lnsinx+(5xcosx)/sinx)= (sinx)5x/2(2,5lnsinx+5xctgx)
11.18.
lny= cosxln(x2+1)
y'= (x2+1)cosx(-sinxln(x2+1)+(2xcosx)/(x2+1))
11.19.
lny= x19ln19+19lnx
y'= 19x^19x19(19x18ln19+19/x)
11.20.
lny= 3xlnx+xln2
y'= x3^x2x(3xln3lnx+3x/x+ln2)
11.21.
lny= e1/xlnsin√x
y'= (sin√x)e^1/x(-(e1/xlnsin√x)/x2+(e1/xcos√x)/(2√xsin√x))=
= e1/x (sin√x)e^1/x((ctg√x)/(2√x)-(lnsin√x)/x2)
11.22.
lny= ectgxlnx
y'= xe^ctgx(-(ectgxlnx)/sin2x+ectgx/x)= ectgxxe^ctgx(1/x-(lnx)/sin2x)
11.23.
lny= ecosxlnx
y'= xe^cosx(-ecosxsinxlnx+ecosx/x)= ecosxxe^cosx(1/x-sinxlnx)
11.24.
11.25.
lny= esinxlnx
y'= xe^sinx(esinxcosxlnx+esinx/x)= ecosxxe^cosx(cosxlnx+1/x)
11.26.
lny= ln2(tgx)/4
y'= (tgx)ln(tgx)/4/*(ln(tgx))/(2cos2x)
11.27.
lny= earctgxlnx
y'= xe^arctgx((earctgxlnx)/(1+x2)+ earctgx/x)
11.28.
lny= thxln(x8+1)
y'= (x8+1)thx((ln(x8+1))/ch2x+(8x7thx)/(x8+1))
11.29.
lny= 29xlnx+xln29
y'= x29^x29x(29xln29lnx+29x/x+ln29)
11.30.
lny= ln2(cos2x)/4
y'= (cos2x)ln(cos2x)/4(-ln(cos2x)sin2x)/cos2x
11.31.
lny= exlnx+9lnx
y'= xe^xx9(exlnx+ex/x+9/x)