Смекни!
smekni.com

РЕГУЛЯЦІЯ АКТИВНОСТІ ФЕРМЕНТІВ (стр. 1 из 3)

РЕФЕРАТ

З БІОЛОГІЇ

на тему ‘РЕГУЛЯЦІЯ АКТИВНОСТІ

ФЕРМЕНТІВ’

cтудентки першого курсу

Факультету природничих наук

Францевої Анастасії

ЗМІСТ

Стр.

Вступ 3

Поняття про енергетичну цінність 4

Ще декідька кінетичних параметрів характеристики

ферментів 5

Кофекменти і кофактори 8

Роль АТФ у роботі ферментів 12

Генна регуляція 16

Теорія оперона 17

Зворотній зв’язок 18

ВСТУП

Одна з характерних властивостей усіх живих організмів полягає в їх здатності до обміну речовин (метаболізму) і до здійснення великої кількості різноманітних хімічних реакцій.

Основу наших сучасних уявлень щодо обміну речовин було закладено ще в 1780 р., коли Лавуазьє та Лаплас всупереч поширеній в ті часи помилковій теорії ‘флогістона’ прийшли до висновку, що дихання є особливою формою горіння. Цього висновку вони дійшли за допомогою простих дослідів, в яких порівнювалось споживання киснюі утворення вуглекислого газу твариною (для досліду було взято щурів) та свічкою, що горіла, вміщеними у скляні сосуди.

Уявлення про те, що обмін речовин у всіх живих організмів здійснюється за допомогою ферментів, або ензимів - специфічних органічних каталізаторів, що синтезуються живими клітинами, - формувалось поступово, починаючи з 1815 р., коли Кірхгоф отримав з пшениці екстракт, здатний перетворювати крохмаль на цукор.

Довготривала суперечка між Лібіхом і Пастером про те, чи можна вважати живими самі ферменти, знайшла розв’язку на користь Лібіха в 1897 р., коли Едуард Бухнер приготував з дріжжів безклітинний екстракт, що перетворював цукор на спирт. В результаті інтенсивних ензимологічних досліджень вдалося виділити велику кількість ферментів, довести, що всі вони являють собою макромолекули білкової природи і що кожен фермент регулює певну хімічну реакцію завдяки специфічній конфігурації своєї молекули. Речовина, з якою відбувається хімічна реакція (субстрат), з’єднується з ферментом, утворюючи з ним специфічний комплекс (далі : ФСК - ферметно-субстрактний комплекс). Таким чином, ферменти регулюють швидкість і специфічність практично всіх хімічних реакцій, що протікають в живих організмах.

Робота ферментів відбувається впорядковано, серіями етапів, що називаються метаболічними шляхами. Тому хімічні процеси в живих організмах проходять з дивовижною ефективністю. Поперше, непотрібних продуктів реакцій накопичується дуже мало, оскільки кожен продукт однієї реакції виступає в ролі субстрата для наступної і т.д. Друга перевага послідовного ходу реакцій стає зрозумілою, якщо врахувати, що хімічні реакції можуть протікати в будь-якому напрямку, тобто вони є оберненими. Якщо кожен продукт окремої реакції в процесі утворення одразу вступає в іншу реакцію, то тенденція до оберненості зводиться до мінімуму. Більше того : якщо можливий кінцевий метаболіт також буде використовуватись швидко, то ціла серія реакцій буде рухатись до завершення. Інша перевага полягає в тому, що групи ферментів, що беруть участь в загальних метаболічних шляхах, можуть об’єднуватись. Деякі було виявлено в невеличких везикулах (мембранних пухирцях) в цитоплазмі. Інші зв’язані з мембранами спеціалізованих органел, таких, як мітохондрії або хлоропласти.

ПОНЯТТЯ ПРО ЕНЕРГЕТИЧНУ ЦІННІСТЬ

Хоча ферменти прискорюють енергетично вигідні реакції, вони ніяк не можуть індукувати енергетично не вигідні реакції. Використовуючи аналогію з водою можна сказати, що самі по собі ферменти не здатні примусити воду текти вгору. Але для того, щоб клітина мала змогу рости і ділитися, в ній повинні відбуватись саме такі процеси : клітини повинні будувати великі й складні молекули з малих і простих. Ми вже побачили, що це відбувається, головним чином, завдяки ферментам, під дією яких енергетично вигідні реакції, що використовують сонячну енергію і продукують тепло, зчіплюються з енергетично не вигідними реакціями, які збільшують ступінь біологічної невпорядкованості. Розглянемо більш детально, як досягається таке зв’язування.

Перш за все потрібно уважніше поставитися до виразу ‘енергетична цінність’, котрим ми до цього часу користувались занадто вільно. Як вже згадувалось вище, спонтанно можуть відбуватися лише ті реакції, в результаті яких невпорядкованість у Всесвіті зростає.

Невпорядкованість збільшується у тому випадку, коли енергія виділяється у вигляді тепла ; критерієм збільшення невпорядкованості може виступати величина, що наз. вільною енергією G. Ця величина визначається у такий спосіб, що зміна, яку позначають ^ G, визначає міру невпорядкованості, що виникає у Всесвіті в результаті реакції. За визначенням, ‘енергетично вигідними’ є ті реакції, під час протікання яких вивільняється велика кількість вільної енергії ; інакше кажучи, такі реакції відрізняються великою за модулем від’ємною величиною ^ G і створюють більший ступінь невпорядкованості. Такі реакції мають яскраво виражену тенденцію до спонтанного протікання, хоча швидкість цих реакцій залежатиме і від інших чинників, як то - присутність специфічних ферментів. І навпаки, реакції, в яких ^ G має додатнє значення (наприклад, реакція утворення пептидного зв’язку між двома амінокислотами), підвищують впорядкованість Всесвіту і не можуть протікати спонтанно, самовільно. Так : енергетично не вигідні реакції відбуваються лише в тому випадку, коли вони зв’язані з іншими реакціями, що мають настільки від’ємну величину ^ G, що й ^ G всього процесу стає від’ємним.

Хід більшості реакцій може бути кількісно передбаченим. Відомо багато термодинамічних параметрів, виходячи з яких можна розрахувати зміну вільної енергії ^ G для більшості важливих метаболічних реакцій клітини. Загальна зміна вільної енергії при функціонуванні того чи іншого метаболічного шляху буде при цьому виражена сумою змін енергії на кожному з етапів цього шляху : ^ Gзаг=сума ^ G

Розглянемо дві реакції : А - Б та В - Г, значення ^ G яких відповідно дорівнюють +2 та -17 ккал / моль (нагадаємо, що 1 моль

23 речовини містить 6*10молекул). В тому випадку, коли ці реакції зв’язані одна з одною, ^ G всього процесу буде дорівнювати -15 ккал / моль. З цього випливає, що енергетично не вигідна реакція А - Б, яка не може протікати спонтанно, може бути обумовлена енергетично вигідною реакцією В - Г за умови, що існує механізм, що забезпечує зв’язування цих двох реакцій.

Одна з найважливіших функцій білків полягає в специфічному каталізі хімічних реакцій. Лігандом - молекулою, що взаємодіє з білком - в цьому випадку виступає молекула субстрата, зв’язування якої ферментом є необхідною передумовою хімічної реакції. Ферменти здатні дуже сильно прискорювати хімічні реакції - значно сильніше за будь-які штучні каталізатори. Настільки високу ефективність можна пояснити кількома факторами : по-перше, ферменти збільшують локальну концентрацію молекул субстрата в каталітичному центрі і утримують відповідні атоми в орієнтації, що необхідна для наступної реакції. Але найважливіше значення має той факт, що частина енергії зв’язування безпосередньо використовується для каталізу. Справа в тому, що молекули субстрата, перш ніж перетворитися на продукти реакції, проходять через ряд проміжних форм із зміненою геометрією і зміненим електронним розподілом. Вільна енергія всіх цих проміжних форм і особливо найменш стабільних перехідних станів значно знижена, якщо молекула зв’язана з поверхнею фермента. Звичайно ферменти мають значно більшу адаптованість до нестабільних перехідних станів субстратів, ніж до їх постійних форм. Використовуючи енергію зв’язування, ферменти допомагають субстратам прийняти певний перехідний стан і таким чином прискорюють певну реакцію.

ЩЕ ДЕКІЛЬКА КІНЕТИЧНИХ ПАРАМЕТРІВ

ХАРАКТЕРИСТИКИ ФЕРМЕНТІВ

Деякі ферменти ковалентно взаємодіють з одним із своїх субстратів. При цьому субстрат зв’язується з амінокислотою або молекулою кофермента (небілковий органічний кофактор). Такі ферментативні реакції часто відбуваються в декілька стадій так, що один субстрат захоплюється центром зв’язування і ковалентно зв’язується, а потім реагує на поверхні фермента з другим субстратом.

З наближенням до кінця кожного реакційного циклу вільний фермент відновлюється. Спосіб дії ферментів накладає обмеження на кількість молекул субстрата, яка може бути ‘оброблена’ однією молекулою фермента за одиницю часу. При збільшенні концентрації субстрата швидкість утворення продукта спочатку також збільшується до максимальної величини. В цій точці досягається насичення молекул фермента субстратом, і тепер швидкість реакції, яку позначають Vmax, залежить тільки від того, наскільки швидко може фермент обробити одну молекулу субстрата. Відношення цієї швидкості до концентрації фермента наз. числом оборотів, яке для багатьох ферментів складає близько 1 000 молекул субстрата за 1с, але у виняткових випадках може досягати значення 1 000 000 і більше.

За низької концентрації субстрата швидкість реакції зростає пропорціонально концентрації субстрата. Однак по мірі збільшення концентрації - ^ V зменшується, і пропорціональність порушується, тут іде реакція змішаного порядку. При подальшому збільшенні концентрації субстата, швидкість реакції стає постійною і не залежить від концентрації субстрата, віббувається насичення субстратом. При цьому лімітуючим фактором стає концентрація фермента.

За допомогою цього графіка ми можемо визначити й інший кінетичний параметр характеристики ферментів - константу Міхаеліса, яку позначають Км. (Варто зазначити, що Км не має змінюватись в залежності від структури субстрата, від рівня PH та температури.)

1913 року Міхаеліс і Ментем опублікували теорію загального