Смекни!
smekni.com

Діагностика трансформаторного обладнання (стр. 2 из 4)

В новій редакції уточнено граничні концентрації газів, запропоновано методику визначення прогресуючого дефекта графічним засобом з використанням номограм, розроблено разом з заводом “Мосизолятор” розділ по діагностиці прогресуючих дефектів у високовольтних вводах трансформаторів за результатами ХАРГ.

Треба відзначити, що при виявленні та оцінюванні розвитку за допомогою ХАРГ таких дефектів силових трансформаторів, як електричні розряди в маслі, перегріви в струмоведучих з’єднаннях і елементах конструкції остова, разом з ознаками, які мають незалежну детерміновану діагностичну цінність (концентрації водню, метану, етану, етилену й ацетилену), використовуються ознаки з умовною діагностичною цінністю (відношення концентрацій різних пар названих газів, швидкість зростання концентрації газів, відношення концентрацій оксиду й діоксиду вуглецю).

У 1986 році ХАРГ був запропонований як контрольний метод для вводів і призначався головним чином для виявлення пошкоджень у масляному каналі вводів, залитих маслом марки Т-750. З 1988 року інтерпретація результатів ХАРГ і відбраковка вводів регламентується у відповідності з протиаварійним циркуляром Ц-06-88(э) “О мерах по повышению надёжности герметичных вводов 110-750 кВ”. Однак спроба зменшити ступінь ушкодження провідів, використовуючи ХАРГ, не призвела до суттєвого зменшеня їх відмов, але значно підвищила затрати труда на обслуговування й викликала ризик додаткового зниження надійності через частини відбирання масла та, відповідно, його підкачки.

Зокрема, дані СКБ заводу “Мозизолятор”, “Пермьэнерго”, “Челябэнерго”, “Тюменьэнерго” та інших свідчать про те, що пошкодження вводів чинились при нормальних показниках ХАРГ, отриманих незадовго до аварії. При цьому дослідження фізико-хімічних процесів у герметичних вводах трансформаторів і досвід експлуатації вказують на те, що відбраковка вводів по вмісту водня й суми вуглецевих газів у відповідності з нормованими в циркулярі Ц-06-88(9) відверто необгрунтована.

Разом з тим ті ж дослідження ізоляції, досвід експлуатації, результати розкривання вводів на заводі “Мосизолятор”, оцінювання діагностичної цінності ХАРГ з урахуванням результатів досліджень понад 600 вводів, виконаних “ВНИИЭ”, та дані діагностики, що отримані в “Свердловэнерго”, дозволяють стверджувати, що за допомогою ХАРГ у високовольтних герметичних вводах трансформаторів можна відшукати пошкодження контактних з’єднань, проявлення гострих країв деталей, послаблення контактного з’єднання верхньої контактної шпильки й локальні дефекти остова.

При цьому використовуються дві основні діагностичні ознаки: концентрація ацетилену й сума вуглецеводневих газів. Однак при відкладенні осадів (продуктів оксидації масла або вимивання компонентів із конструктивних матеріалів) на внутрішній поверхні фарфору та остові, а також у випадку колоїдного старіння масла (появи та росту металомістких колоїдних часток) хроматографічні ознаки відсутні.

Між тим, саме ці дефекти – одна з головних причин пошкоджень високовольтних герметичних вводів трансформаторів. Для оцінки їх розвитку у «ВНИИЭ» розроблено і застосовано метод вимірювань каламутності трансформаторного масла, який дозволяє судити про розвиток колоїдно-дісперсних процесів, що призводять до зниження електричної стійкості масляного каналу.

2.2 Застосування оптичної каламутності масла для оцінки стану високовольтних герметичних вводів трансформатора.

Процес погіршення стану ізоляції високовольтних герметичних вводів трансформаторів під дією експлуатаційних факторів, як вказано в [6-8], пов’язаний з утворенням у трансформаторному маслі металомістких колоїдних часток, у першу чергу нафтенатів міді й заліза. Зростання концентрації й збільшення розмірів колоїдних часток в результаті процесу коагуляції, пов’язаний з наявністю в маслі кислот, смол і мил, призводить до виформовування зон підвищеної концентрації часток у місцях найбільшої напруженості електричного поля та активації процесу седиментації, який призводить до насичення відкладень на внутрішній поверхні нижної фарфорової кришки. При цьому найбільша роль у зниженні електричної стійкості масляного каналу належить часткам, що мають розміри понад 100 ангстрем.

Розвиток методів контролю стану масляного каналу для виявлення дефектів герметичних високовольтних вводів на ранній стадії їх розвитку потребує вести пошук методів і засобів, основаних на дослідженні колоїдно-дисперсних процесів, що мають місце в трансформаторному маслі при експлуатації. Застосування оптичних методів, основаних на явищі розсіяння малими частками (Релеєвське розсіяння), є універсальним і ефективним засобом визначення стану колоїдно-дисперсних систем, який дозволяє визначати кількісні показники, що характеризують наявність колоїдних часток у досліджуваній рідині. За допомогою Релеєвського розсіяння, теорії технічної діагностики і аналізу статистичних даних вимірювань каламутності трансформаторного масла вводів у роботі [15] отримано чисельну оцінку діагностичної цінності використання даного показника.

2.3 Оцінка стану паперової ізоляції обмоток по наявності фуранових сполучень в маслі.

Виявлення небезпечних деформацій, розпресовки обмоток та оцінка

механічної стійкості виткової ізоляції в комплексі визначають стан основного елемента – обмотки. В зв’язку з цим посилюється можливість оцінки спрацьовування паперової ізоляції обмоток трансформатора. Для цього останнім часом в енергосистемах отримала розповсюдження методика оцінки стану паперової ізоляції по наявності фуранових сполучень у маслі.

Відомо, що на старіння ізоляції впливають температура, час експлуатації, вологість, вміст кисню. Присутність ув ізоляційному маслі фурфурола, його похідних, монооксиду вуглецю є прямим наслідком розкладання ізоляції.

При виділенні з масла фуранових сполучень застосовують рідиново-рідинову або твердофазну хроматографію й аналізують прямофазною або обернено-фазною високоефективною рідинною хроматографією, якою можна визначити згідно МЕК п’ять фуранових речовин: фурфурол (2-фурфурол), 5-гідроксиметілфурфурол, фурфуриловий спирт (2-фурфурилалкоголь), 2-ацетілфуран, метілфурфурол (5-метіл-2-фурфураль).

Фурфурол можна також визначити спектрофотометрично у вигляді його кольорового комплексу з ацетіланіліном. Фуранові похідні визначають капілярною газовою хроматографією за допомогою head-space накопичувача.

Також для визначення фуранових сполучень в трансформаторному маслі може бути застосовано метод високоефективної тонкошаровоі хроматографії (ВЕТШХ), де за допомогою використання різних рухомих фаз можна визначити як сумарну кількість фуранових речовин, так і окремо: фурфурол, оксиметілфурфурол та фурфуриловий спирт.

Згідно полярності 80% фурфурола розчинюється в ізоляційному маслі, а гідроксиметілфурфурол адсорбується здебільшого на паперовій ізоляції, ніж переходить у масло.Таким чином, в маслі хроматографічним методом в основному визначається саме фурфурол.

В зарубіжній літературі запропоновано вміст основних фуранових сполучень (фурфурола й гідроксиметілфурфурола), розчинених у маслі, оцінювати як сумарну кількість фуранових речовин – для цього введено термін “totalfurans”.

Також деякі джерела демонструють, що застосування різновиду рідинної хроматографії в тонкому шарі при використанні хлористого метілену як рухомої фази, оцінку вмісту сумарних фуранових сполучень можна детектувати у вигляді однієї фракції, так як індекси утримання альдегідів, спиртів і гідроксиефірів при використанні запропонованої фази співпадають. При використанні еталонних розчинів фурфурола різної концентрації, які дозволяють скласти спеціальну шкалу, можна провести не тільки якісну, а й кількісну оцінку вмісту фуранових речовин у трансформаторному маслі.

МЕК стандартизовано узагальнені дані меж визначення фуранових сполучень:

- 0,05 мг/кг при використанні методик високоефективної рідинної хроматографії (ВЕРХ), виконаних на зарубіжних хроматографах високої якості;

- 0,1 мг/кг фурфурола можна визначити спектрофотометрично;

- 0,5 мг/кг фурфурола виявляються методом газової хроматографії (ГХ) із застосувуванням head-space накопичувача або методом ВЕТШХ;

- 5 мг/кг визначають речовини протилежної полярності: фурфуриловий спирт, гідроксиметілфурфурол, ацетілфуран.

На нараді в Санкт-Петербурзі представники “ОРГРЭС”, “Ленэнерго”,

АТ “ВНИИЭ” доповіли, що межа визначення фуранових сполучень складає 0,5 мг/кг. Усі роботи були виконані на обладнанні невисокого ступеню точності, так як підрозділи “Минтопэнерго” хроматографічним обладнанням імпортного виробництва не забезпечені. В експлуатації при оцінюванні остаточного ресурсу трансформаторів зручно користуватись визначенням місткості фуранових речовин. Статистичний огляд понад 500 трансформаторів по усій території Європи показав, що в ізоляційному маслі устаткування спостерігається концентрація фуранових речовин, здебільшого понад 1 мг/кг.

Треба однак відзначити, що лабільні фуранові сполучення розкладаються під дією кислого середовища на продукти нефуранового ряду. При наявності в трансформаторі термосифонного фільтру фуранові продукти, що утворились, адсорбуються і розкладаються із-за кислого середовища на сілікогелі, а інформація про старіння ізоляції може надходити тільки після встановлення динамічної рівноваги між продуктами поглинання й виділенням сорбента. Тільки в цьому випадку процес розпаду паперової ізоляції може проявлятись в накопиченні фуранових сполучень у маслі, тому їх відсутність не свідчить про задовідльний стан паперової ізоляції. Найбільш ефективний показник оцінки зносу паперової ізоляції – ступінь полімерізації, яка характеризує в основному її механічну стійкість на розтягання й злам.