Муниципальное образовательное учреждение
«Шелеховский лицей»
Ионосфера - Волшебное зеркало планеты.
Исследовательская работа.
Выполнила:
Машковцева Татьяна Гр 19-11
Научный руководитель:
Сажин И.И.
Шелехов 2009
Содержание
Введение……………………………………………………………………………………….3
Глава 1
1.1 Причины её происхождения…………………………………………………………..4
1.2 Форма высотной зависимости………………………………………………………...4
1.3 Её изменения в течение суток, от сезона к сезону, от года к году, зависимость от солнечной активности…………………………………………………………………5
Глава 2
2.1 Способность отражать радиоволны и обеспечивать, таким образом, дальнюю радиосвязь……………………………………………………………………………………….6
2.2 Зависимость ионосферы от 11 летнего солнечного цикла…………………………...7
2.3 Ионосфера как щит Земли……………………………………………………………...7
2.4 Ионосфера как предвестник землетрясений…………………………………………..7
2.5 Сияния в ионосфере…………………………………………………………………….7
Заключение………………………………………………………………………………………9
Список использованной литературы…………………………………………………………10
Введение.
Атмосфера не может нас интересовать: она воздействует на нас; она ограничивает наши стремления; она служит причиной трагедий; она дарит нам грандиозные зрелища. Атмосферу просто нельзя игнорировать – это то, что нас постоянно окружает. Мы любопытны и хотим знать всё «как» и «почему» атмосферных процессов. Мы практичны и хотим всё контролировать или по крайне мере, найти полезное применение тем колоссальным силам, которые наблюдаем.
Меня всегда интересовала, а что же нас окружает. И вот мне представилась прекрасная возможность всё узнать. И ещё поделиться этими знания ми с другими.
Ионосфера (от ионы и греч. spháira - шар), ионизированная часть верхней атмосферы, которая расположена выше 50 км.над земной поверхностью и до высот примерно 2000 км. Оказывается она обладает очень интересными свойствами, так что её называют иногда «Волшебным зеркалом планеты».
Основная цель моей работы узнать подробнее, что представляет из себя ионосфера и какими свойствами она обладает, почему её можно назвать «Волшебным зеркалом планеты».
Глава 1.
1.1 Причины
происхождения ионосферы.
Ионизация - это процесс, в котором отрицательно заряженные электроны "отнимаются" (или присоединяются) от нейтральных атомов или молекул для образования положительно (или отрицательно заряженных) ионов и свободных электронов. Из-за ионов и произошло название ионосфера, но она намного легче т.к. в ней свободно движутся электроны, которые очень важны, если говорить о прохождения радиоволн на высоких частотах (КВ: 3-30 МГц). В общем, чем больше количество электронов, тем более высокие частоты можно использовать.
Основным источником ионизации ионосферы днём является коротковолновое излучение Солнца с длиной волны короче 1038 , однако важны также и корпускулярные потоки, галактические и солнечные космические лучи и др. Каждый тип ионизующего излучения оказывает наибольшее действие на атмосферу лишь в определённой области высот, соответствующих его проникающей способности.
1.2 Форма высотной зависимости электронной концентрации.
Наблюдения на мировой сети станций позволили получить глобальную картину изменения ионосферы. Было установлено, что концентрация ионов и электронов в ионосфере распределена по высоте неравномерно: имеются области, или слои, где она достигает максимума. Таких слоев в ионосфере несколько; они не имеют резко выраженных границ, их положение и интенсивность регулярно изменяются в течение дня, сезона и 11-летнего солнечного цикла. Верхний слой F соответствует главному максимуму ионизации ионосферы .Ночью он поднимается до высот 300-400 км, а днём (преимущественно летом) раздваивается на слои F1 и F2 с максимумами на высотах 160-200 км и 220-320 км. На высотах 90-150 км находится область Е, а ниже 90 км область D. Слоистость Ионосфера обусловлена резким изменением по высоте условий её образования .
Слой D
Область D (60-90 км) характеризуется плотностями N max~ 102—103 см-3, слабой ионизацией и, соответственно, небольшой концентрацией заряженных частиц. Основным ионизирующим фактором этого слоя является рентгеновское излучение Солнца. Некоторую роль играют дополнительные слабые источники ионизации: метеориты, сгорающие на высотах 60-100 км, космические лучи, а во время магнитных бурь — энергичные частицы магнитосферного происхождения.
Ночью ионизация в слое D резко уменьшается, но не исчезает полностью.
Слой Е
Область Е (90-120 км) характеризуется плотностями Nmax~ 105 см-3, ростом концентрации электронов с высотой в дневное время, связанным с поглощением солнечного коротковолнового излучения.
Скорость рекомбинации ионов здесь довольно велика, и даже во время солнечного затмения концентрация ионов в области Е успевает резко упасть. Ночью концентрация электронов в области Е уменьшается до 103 см-3. Это связано с тем, что процессы рекомбинации не успевают охватить все долгоживущие ионы (О+, «метеорные» ионы Са+, Fe+, Si+ и др.). Кроме того, некоторое количество ионов поступает в область Е сверху из области F, где рекомбинация идёт медленнее и концентрация ионов относительно велика. Наконец, определённую роль в ионосфере средних широт играют ночные источники ионизации — поглощение рассеянного геокороного излучения Солнца в линии La, метеорная ионизация, космические лучи, а при больших магнитных бурях — и энергичные нейтральные атомы, образующиеся при процессах перезарядки заряженных частиц пояса кольцевого тока в магнитосфере с атомами геокороны. Этот последний процесс во время магнитной бури становится особенно важен для существования ночной области Е на низких широтах.
Спорадически на высотах 100-110 км возникает слой ES, очень тонкий (0,5-1 км), но плотный. Особенностью этого подслоя является высокая концентрации электронов (ne~105 см-3), которые оказывают значительное влияние на распространение средних и даже коротких радиоволн, отражающихся от этой области ионосферы.
Слой F
Областью F называют теперь всю ионосферу выше 130—140 км. Максимум ионообразования под действием солнечного коротковолнового излучения лежит на высотах 150—200 км. Однако ионы до момента рекомбинации на больших высотах живут сравнительно долго, а процессы диффузии приводят к тому, что электроны и ионы распространяются вверх и вниз от области максимума ионообразования. В результате максимальная концентрация электронов и ионов в области F наблюдается выше — на высотах 250—400 км. В дневное время, однако, мощная ионизация солнечным Ультрафиолетовым излучением на этих высотах часто вызывает появление дополнительной «ступеньки» в распределении электронной концентрации с высотой, её называют областью F1 (150—200 км). Она оказывает заметное влияние на распространение коротких радиоволн.
Вышележащую часть слоя F часто называют слоем F2. Здесь плотность заряженных частиц достигает своего максимума — N ~ 105—106 см-3.
На больших высотах возрастает роль процессов диффузии, что приводит к преобладанию более лёгких ионов: О+ вплоть до высот 400—1000 км, а ещё выше — ионов водорода (протонов) и в меньших количествах — ионов Ne. Диффузионный обмен ионами между верхней частью области F и вышележащей плазмосферой оказывается исключительно важным стабилизатором характеристик области F.
1. Её изменения в течение суток, от сезона к сезону, от года к году, зависимость от солнечной активности.
Ионосфера не является стабильным средством передачи одной и той же частоты в течении года или даже суток. Ионосфера изменяется в зависимости от солнечного цикла, сезона. Таким образом, частота, которая успешно распространяется в данный момент, через какой-то час может быть утеряна.
Частоты области E находятся выше летом, чем зимой. Однако, вариация в частотах F области более усложнена. В обоих полушариях, частоты F области в полдень вообще достигают максимума в момент равноденствий (март и сентябрь). В момент солнечного минимума полуденные летние частоты, как ожидается, в основном выше, чем зимние, но в момент солнечного максимума, зимние частоты в некоторых местоположениях, могут быть выше, чем те летом. Кроме того, частоты в момент равноденствий (март и сентябрь) выше, чем те летом или зимой как для солнечного максимума, так и минимума. Наблюдение полуденных, зимних частот, часто более высоких, чем летом называется сезонной аномалией.
Рабочие частоты обычно выше в течение дня и ниже ночью. С рассветом, солнечная радиация порождает электроны в ионосфере, а частота увеличивается, достигая своего максимума к полудню. В течение полудня, частоты начинают уменьшаться из-за электронной потери и с вечером, области D, E, и F1 становятся мало значащими. Ионосферная ВЧ Связь в течение более низкое из-за недостатка в области D. В течении ночи, частоты уменьшаются, достигая своего минимума как раз перед рассветом.
Глава 2 .
2.1 Способность отражать радиоволны и обеспечивать, таким образом, дальнюю радиосвязь.
К числу основных физических свойств ионосферы относится способность отражать радиоволны декаметрового диапазона.
Электромагнитные волны декаметрового диапазона («короткие» радиоволны), излученные из какого-либо пункта А, расположенного на поверхности Земли, отражаются от ионосферы как при вертикальном, так и при наклонном падении и возвращаются на Землю в некотором пункте В. При наклонном падении радиоволн на ионосферу дальность распространения, даже при однократном отражении волны, лежит в пределах от десятков до 3000 км. Таким образом, создается ионосферный канал связи, который широко используется для различных целей, связанных с передачей информации.