Орбиталь основного состояния Φ0 имея постоянное значение, не зави-сящее от угла, и её график – это окружность с радиусом
(Рис. 5а).Орбитали, принадлежащие первому возбужденному уровню
и – это косинусоида и синусоида. Их графики – две восьмерки, имеющие области положительных и отрицательных значений. Нулевое значение орбитали, т.е. ее узел, приходится на полюс. Через него перпендикулярно оси орбитали вдоль координатного луча проходит узловая прямая линия. Она симметрично отделяет друг от друга области положительных и отрицательных значений орбитали, которые образуют лепестки.В общем случае у орбитали с квантовым числом |m| имеется |m| узловых линий, образующих пучок и пересекающихся в полюсе. Они разделяют орбиталь на 2|m| лепестков с чередующимися знаками.
3.2.8. Удобна классификация орбиталей, связанная с квантовым числом m, находящая широкое химическое применение. Значению m=0 отвечает σ-орбиталь, |m|=1 – пара π-орбиталей, |m|=2 – две δ-орбитали и т.д.
3.2.9. Как уже указывалось, графическая наглядность действительных орбиталей плоского ротатора достигнута за счет потери определенности в ориентации вращательного момента, хотя модуль момента и значение энергии остаются однозначными характеристиками состояния. Т.е. действительные орбитали, будучи собственными функциями операторов квадрата момента импульса
и энергии , перестали быть собственными функциями оператора проекции момента импульса .