Смекни!
smekni.com

Лінійна регресія (стр. 2 из 5)

N

Y1

Y2

Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12
1 7,24 10,89 16,21 12,11 15,21 16,62 10,22 12,50 19,66 14,87 22,68 10,65
2 8,02 11,92 17,75 12,30 15,42 17,63 10,58 13,88 20,53 15,78 23,89 11,67
3 9,28 12,45 18,39 13,82 16,44 19,22 12,01 15,16 21,31 16,79 24,32 12,96
4 10,12 13,27 18,87 14,84 17,93 19,36 12,84 16,06 22,59 18,03 25,97 13,40
5 11,12 14,12 19,60 15,86 18,52 20,52 13,28 16,66 23,27 18,29 28,23 15,12
6 12,19 15,23 21,21 16,41 19,80 21,95 15,13 17,65 24,44 19,93 27,60 16,03
7 13,01 16,07 21,84 17,80 20,76 22,45 15,84 18,46 25,85 20,32 28,13 16,29
8 14,12 17,40 23,00 18,61 2130 23,56 17,08 19,54 26,74 21,18 29,84 18,07
9 15,21 18,68 24,44 19,57 22,25 24,90 17,99 20,58 27,36 22,47 30,31 18,40
10 16,29 19,48 25,36 21,26 24,14 25,53 18,32 21,77 28,37 23,47 31,52 19,53
11 17,01 20,52 25,54 21,08 24,17 26,11 19,49 22,15 29,22 24,07 32,27 20,48
12 18,03 21,32 2714 22,99 25,66 28,02 20,59 23,80 30,50 25,57 33,77 21,72
13 19,19 22,58 27,95 23,43 26,50 28,37 21,35 24,79 31,21 27,07 34,66 23,17
14 20,21 23,73 28,99 24,63 27,46 29,46 23,20 25,57 32,56 27,62 35,93 23,57
15 21,22 25,02 30,80 25,41 29,02 30,42 24,21 27,18 33,66 28,42 36,97 24,41

Для формування варіанта вибирається будь-який стовпчик з таблиці №1 в парі з будь-яким стовпчиком таблиці №2.

Тема №2: Аналіз індивідуального ринку.

У наш час використання ЕОМ дає можливість проводи­ти детальний аналіз індивідуальних ринків. Сама таблиця попиту та її представлення у вигляді кривої попиту не дає можливості виробнику знайти оцінку оптимальної ціни на даний вид товару та прийняти оптимальне рішення. Нехай відома таблиця попиту:

Pi Р1 Р2 ..Рn
Di D1 D2 ..Dn

Вводимо гіпотезу, що між ціною Р та величиною попиту D існує стохастична залежність D = a0 + a1Р + a2P2.

Для регресії у вигляді многочлена другого степеня сис­тема нормальних рівнянь має такий вигляд:

Після розв'язування системи рівнянь знайдемо оцінки параметрів регресії попиту.

Вплив еластичності попиту на ринкові обороти.

Якщо відома регресія попиту на певний вид товару D = f(P), товарообіг у грошовому виразі дорівнює добутку реалізованого попиту на ціну товару Z = Р • f(P). Виробни­ка цікавлять зміни товарообігу в грошовому виразі залежно від зміни ціни на даний вид товару. Проведемо дослідження зміни товарообігу Z залежно від значень Р, тобто знайдемо проміжки зростання, спадання і точку екстремуму това­рообігу Z. Для цього знайдемо похідну від Z по Р:

;

де Kd = - коефіцієнт еластичності попиту.

Звідси випливає, що товарообіг Z є функцією від ко­ефіцієнта еластичності попиту Kd . В залежності від знака Z' розрізняють три різних варіанти коефіцієнта елас­тичності попиту:

1. Якщо похідна від товарообігу по ціні додатна Z > 0, то при зростанні ціни Р зростає товарообіг Z. Оскільки з економічного змісту f{P) > 0, то Zp’ буде більше нуля, як­що 1 + Kd > 0. Звідки випливає, що на проміжку, де товаро­обіг зростає, коефіцієнт еластичності попиту Kd > -1. З іншого боку, регресія попиту спадна і тому f'(P) < 0. Звідки випливає, що Kd < 0.

Таким чином, на проміжку, де товарообіг зростає, кое­фіцієнт еластичності попиту змінюється в межах від --1 до 0 (рис). В економіці прийнято називати попит нееластичним, якщо коефіцієнт еластичності попиту змінюється в межах від-1 до 0.

Економічна інтерпретація. Зміна ціни на 1% викликає зміну попиту в зворотному напрямку на |Kd| %, де

О < Kd < -1, при цьому товарообіг у грошовому виразі зрос­тає.

2. Якщо Z' < 0, то з підвищенням ціни на товар відбу­вається зниження товарообігу в грошовому виразі. Оскільки f(P) • [1 + Kd] < 0, a f(P) > 0, то 1 + Kd < 0. Звідки випли­ває, що Kd < -1. Якщо значення коефіцієнта еластичності попиту для да­ної ціни Р менше -1, то попит при цій ціні еластичний.

Економічна інтерпретація. При еластичному попиті зміна ціни товару на 1% викликає зміну попиту в зворотному на­прямку на Kd%, де Kd < -1. При цьому товарообіг у грошо­вому виразі зі зростанням ціни спадає.

3. Якщо Z' = 0 для деякого проміжку цін, то на цьому проміжку товарообіг залишається сталим. Якщо в деякій точці Р0 Z' = 0, то ця точка називається критичною. Причому якщо при переході через цю точку по­хідна Z' змінює знак з плюса на мінус, то при цій ціні то­варообіг у грошовому виразі буде максимальним. Коефіцієнт еластичності в цій точці дорівнює -1.

Визначимо проміжки зростання та спадання товарообігу. Якщо регресія попиту має вигляд многочлена другого по­рядку

D = a0 + a1 • Р + a2 • P2., то товарообіг для цієї регресії знаходиться за формулою Z = f(P) • Р = a0P + a1 • Р2 + a2 • P3.

Знайдемо похідну від товарообігу по ціні: Z’ = a0 + 2a1Р + 3a2P2.

З необхідної умови екстремуму Z' = 0 знайдемо кри­тичні точки:

Приведене рівняння можна отримати з умови Kd = f '(P) • Р / f(P) = -1. Знайдемо залежність еластичнос­ті попиту від ціни: Kd=f’(P) •P/f(P)=(a1•P+2a2.P2)/(a0+a1•P+a2•P2).

Визначення максимального прибутку.

Нехай собівартість продукції складається із сталих затрат С та змінних затрат, пропорційних обсягу випуску продукції V•D. У цьому випадку прибуток підприємства буде дорівню­вати різниці між товарообігом у грошовому виразі і собівар­тістю продукції, тобто F=D•P-(C+V•D)=a2•PЗ+(a1-V•a2)•P2+ (a0-V•a1)•P-C-V•a0.

Знайдемо оцінку ціни, при якій прибуток буде макси­мальним. Якщо в деякій точці р0, F досягає екстремуму, то в цій точці похідна дорівнює нулю. Знайдемо критичні точ­ки dF/dP=3•а2P2+2•(a1-V•a2)•P+a0 – V•a1 = 0,

тобто одержимо квадратне рівняння 3•а2P2+2•(a1-V•a2)•P+a0 – V•a1 = 0,

Звідки отримаємо Р3,4=(V•а2 – а1±0,5•D1/2)/(3•a2), де D=4•[(а1 – Vа2)2+За2•(Va1-a0)].

Точку екстремуму знаходимо, дослідивши регресію това­рообігу. Припустимо, що це буде значення p4, тоді опти­мальна кількість продукції, що випускається, визначається за формулою d1= a0+a1•p4+a2•p42, а максимальний прибуток:

F{p4} = Z(p4} – Vf(p4) = a2•p43 + (a1-Va2)•p42 + (a0-V-a1)-p4•C-V–a0

Залежність зміни товарообігу від коефіцієнта еластичності

Наведену методику дослідження індивідуального ринку можна застосувати для залежності товарообігу від собіварто­сті, яка має більш складний характер. У такому випадку для знаходження екстремальних точок необхідно застосовувати чисельні методи розв'язування рівнянь.

Використання економетричної моделі

Аналіз товарообігу на основі регресії з оціненими пара­метрами і фактором — ціна товару - має важливе значення для монополіста при виборі оптимальної ціни товару за кри­терієм оптимізації «максимум прибутку».

Однак слід відмітити, що запропонована економетрична модель не може бути використана для всіх видів товарів і не враховує крайових ефектів. Так, у роботі відмічається, що для товарів першої необхідності попит не еластичний і звідси із збільшенням ціни товарообіг у вартісному виразі зростає. Для такого товару немає сенсу казати про ціну, при якій прибуток буде максимальним. Тому питанням ціноутво­рення на товари першої необхідності займається держава. Необхідно зауважити, що попит залежить не тільки від ціни, а й від рівня прибутку (криві Енгеля).