до розрахункових робіт
з курсу “Економетрика”
Тема №1: Лінійна регресія.
Якщо дано сукупність показників y, що залежать від факторів х, то постає завдання знайти таку економетричну модель, яка б найкраще описувала існуючу залежність. Одним з методів є лінійна регресія. Лінійна регресія передбачає побудову такої прямої лінії, при якій значення показників, що лежать на ній будуть максимально наближені до фактичних, і продовжуючи цю пряму одержуємо значення прогнозу. Процес продовження прямої називається екстраполяцією. Відповідно до цього постає задача визначити цю пряму, тобто рівняння цієї прямої. В загальному вигляді рівняння прямої виглядає:
=а+bх, (1.1)
де - вирівняне значення у для відповідного значення х.
Константи а і b - константи, які передбачають зменшення суми квадратів відхилень між фактичним значенням у і вирівняним значенням .
S(у - )2 ® min (1.2)
Коефіцієнт а характеризує точку перетину прямої регресії з лінією координат.
Коефіцієнт b характеризує кут нахилу цієї прямої до осі абсцис, а також на яку величину зміниться при зміні х на одиницю.
Коефіцієнти а і b знаходять із системи рівнянь (1.3), що випливає з формули (1.2).
(1.3)
Знайшовши значення параметрів розраховують ряд вирівняних значень для відповідних факторів і проводять дослідження знайденої економетричної моделі.
Щоб зробити висновок про доцільність використання знайденої моделі проводять аналіз за наступними напрямками:
1) Розраховують критерій Фішера та перевіряють знайдену модель на адекватність вихідним даним;
2) Розраховують і аналізують дисперсію показників;
3) Розраховують і аналізують коефіцієнт кореляції;
4) Розраховують та аналізують коефіцієнт еластичності;
5) Розраховують довірчий інтервал для прогнозованих показників.
Критерій Фішера.
Для оцінки знайденої економетричної моделі на адекватність порівнюють розрахункове значення критерію Фішера із табличним.
Розрахункове значення критерію Фішера знаходиться за формулою:
, (1.4)
де , (1.5)
, (1.6)
n – число дослідів,
m – число включених у регресію факторів, які чинять суттєвий вплив на показник.
Для даної надійної ймовірності р (а=1-р рівня значущості) і числа ступенів вільності k1=m, k2=n-m-1 знаходиться табличне значення F(a, k1, k2). Отримане розрахункове значення порівнюється з табличним. При цьому, якщо Fроз > F(a, k1, k2), то з надійністю р = 1-а можна вважати, що розглянута економетрична модель адекватна вихідним даним. У протилежному випадку з надійністю р розглянуту лінійну регресію не можна вважати адекватною.
Дисперсія.
Дисперсія в лінійній регресії дає можливість визначити значимість характеристик, вирахуваних в регресійному аналізі (характеристики а і b). Для визначення цих характеристик використовують:
1) Загальна дисперсія - характеризує рівень відхилень між фактичними значеннями ряду і їх середнім значенням:
(1.7)
2) Дисперсія, що пояснюється регресією. Чим більша доля дисперсії, що пояснюється регресією в загальній дисперсії, тим тісніший зв`язок між у і х. Чим ця доля менша, тим відповідно слабший зв`язок. Ця дисперсія визначається, як сума квадратів відхилень між вирівняним значенням ряду і середнім значенням ряду.
. (1.8)
Якщо ПД ® до ЗД, то зв`язок тісний між у і t.
Якщо ПД ® до ЗД, то зв`язок слабшає. Изображение помощника.
3) Залишкова дисперсія - це та частина ЗД, яка не пояснюється регресією
Зал.Д = ЗД – ПД,
(1.9),
де уі – фактичне значення ряду.
Коефіцієнт кореляції.
Коефіцієнт кореляції r – міра тісноти зв`язку. Він на відміну від дисперсії характеризує міру тісноти зв`язку (дає її числове значення). Змінюється в межах від -1 до +1.
Якщо r=0, то лінія регресії паралельна осі абсцис, тобто залежності між у і t немає (регресія відсутня).
Якщо r ® +1 (додатна регресія). Із збільшенням t – уt теж буде зростати.
Якщо r ® -1 (від`ємна регресія). Із збільшенням t – уt буде зменшуватись.
Коефіцієнт кореляції визначається як корінь квадратний з коефіцієнта детермінації r2, що показує долю ПД в ЗД:
, (1.10)
і відповідно
(1.11)
де ПД і ЗД розраховуються відповідно за формулами 1.8 і 1.7.
Знак коефіцієнта кореляції співпадає із знаком коефіцієнта b в рівнянні регресії.
Коефіцієнт еластичності.
Розрахунок коефіцієнта еластичності розраховується для кожного із факторів і показує на скільки відсотків зміниться показник, якщо фактор зміниться на 1%.
Коефіцієнт еластичності:
(1.12)
Довірчий інтервал.
Вихідна економетрична модель лінійної регресії передбачає наявність випадкової величини Е, яка вимірює похибку між фактичним значенням і вирівняним значенням показника. Для розрахунку цих похибок використовують поняття "стандартного відхилення"
, (1.13)
де Sr – стандартна похибка рівняння регресії
n-2 – число значень ряду зменшене на кількість параметрів рівняння регресії (тобто а і b).
Розрахувавши стандартну похибку рівняння регресії знаходимо стандартну похибку прогнозу:
(1.14)
Для розрахунку довірчих меж потрібно знайти значення .
Нижня межа довірчого інтервалу ; верхня межа довірчого інтервалу .
Прогнозне значення ур=a+bxp буде знаходитись в межах від уmin до ymax.
(1.15)
де t – критерій Стюдента (знаходиться з таблиць в залежності від ймовірності P і ступеня вільності n-m-1).
Питання для самоперевірки:
1.Розкрийте суть лінійної регресії.
2. Розкрийте зміст коефіцієнтів рівняння лінійної регресії.
3. Як знайти коефіцієнти лінійної регресії.
4.Що потрібно для формування висновку про доцільність використання знайденої моделі.
5. Для чого використовується критерій Фішера і як він розраховується
6. Загальна дисперсія, її зміст та визначення.
7. Пояснювальна дисперсія, її зміст та визначення.
8. Загальна дисперсія, її зміст та визначення.
9. Яким показником характеризується міра тісноти зв’язку, метод його розрахунку.
10. Коефіцієнт еластичності, його зміст та визначення.
11. Для чого використовуються довірчі інтервали.
12. Як розрахувати стандартну похибку рівняння регресії і прогнозу.
13. Для чого використовується t- критерій Стюдента.
N | Х1 | Х2 | ХЗ | Х4 | Х5 | Х6 | Х7 | Х8 | Х9 | Х10 | Х11 | Х12 |
1 | 2,06 | 2,53 | 2,17 | 3,65 | 3,22 | 2,16 | 4,57 | 2,25 | 6,15 | 1,86 | 2,07 | 3,11 |
2 | 2,58 | 3,54 | 2,90 | 3,82 | 3,87 | 2,65 | 5,42 | 2,98 | 5,66 | 1,91 | 3,22 | 3,15 |
3 | 3,14 | 3,84 | 3,29 | 3,76 | 4,95 | 3,49 | 5,29 | 2,15 | 7,50 | 2,14 | 3,04 | 3,85 |
4 | 3,54 | 3,84 | 4,13 | 5,24 | 5,10 | 3,16 | 6,33 | 2,71 | 6,90 | 3,39 | 3,42 | 4,84 |
5 | 4,18 | 4,22 | 5,25 | 5,03 | 5,88 | 3,85 | 7,63 | 3,70 | 6,31 | 3,95 | 5,23 | 4,62 |
6 | 4,78 | 4,81 | 4,92 | 5,52 | 7,28 | 4,58 | 7,53 | 4,59 | 6,25 | 4,30 | 5,70 | 4,87 |
7 | 5,11 | 6,53 | 5,79 | 5,62 | 6,90 | 5,33 | 7,73 | 4,77 | 9,39 | 5,10 | 6,53 | 6,09 |
8 | 5,67 | 5,82 | 5,87 | 6,98 | 7,54 | 5,89 | 8,44 | 5,34 | 9,73 | 5,47 | 6,41 | 7,06 |
9 | 6,02 | 6,43 | 6,99 | 6,91 | 7,91 | 6,20 | 9,49 | 5,45 | 9,33 | 5,97 | 6,68 | 6,23 |
10 | 6,65 | 7,73 | 7,04 | 7,95 | 8,40 | 6,39 | 9,18 | 6,00 | 10,50 | 6,16 | 7,46 | 6,83 |
11 | 7,05 | 8,19 | 8,14 | 7,24 | 8,14 | 6,95 | 10,14 | 6,25 | 11,10 | 6,46 | 6,83 | 8,01 |
12 | 7,52 | 7,65 | 8,06 | 9,27 | 8,76 | 7,25 | 9,94 | 6,79 | 11,51 | 6,07 | 6,34 | 8,26 |
13 | 8,03 | 9,31 | 8,57 | 8,46 | 9,67 | 7,80 | 10,92 | 8,24 | 12,42 | 6,71 | 8,19 | 9,37 |
14 | 8,56 | 9,26 | 9,45 | 10,30 | 10,28 | 8,47 | 11,89 | 8,51 | 12,40 | 7,16 | 7,19 | 9,02 |
15 | 9,03 | 9,86 | 9,06 | 10,72 | 10,59 | 9,22 | 11,14 | 9,15 | 13,14 | 8,81 | 9,72 | 9,76 |
Хр | 9,52 | 9,69 | 10,30 | 10,05 | 11,58 | 9,32 | 11,73 | 9,78 | 12,56 | 8,07 | 8,71 | 10,28 |
Значення показника У