Смекни!
smekni.com

Елементи логіки (стр. 3 из 3)

Перевірити, чи є одна формула логічним висновком інших, можна за допомогою порівняння таблиць істинності цієї формули та кон'юнкції інших. Але можна діяти зовсім іншим способом на основі двох наступних тверджень.

Теорема 1. Формула Y є логічним висновком формул X1, X2, …, Xn тоді й тільки тоді, коли формула (X1ÙX2Ù…ÙXnY є тавтологією.

Доведення. 1 (Необхідність). Припустимо, що формула Y є логічним висновком формул X1, X2, …, Xn. Якщо за деяких значень літер у формулах X1, X2, …, Xn хоча б одна з них хибна, то за означенням імплікації (X1ÙX2Ù…ÙXnY істинна. Якщо ж за деяких значень літер у формулах X1, X2, …, Xn всі вони істинні, X1ÙX2Ù…ÙXn також істинна. Але формула Y є логічним висновком формул X1, X2, …, Xn, тому вона також істинна. Тоді істинна і формула (X1ÙX2Ù…ÙXnY. Отже, за будь-яких значень літер (X1ÙX2Ù…ÙXnY істинна, тобто є тавтологією.

2 (Достатність). Припустимо, що (X1ÙX2Ù…ÙXnY є тавтологією. Тоді якщо за якихось значень літер у формулах X1, X2, …, Xn всі вони істинні, то Y також істинна, тобто є їх логічним висновком.

Теорема 2. Формула Y є логічним висновком формул X1, X2, …, Xn тоді й тільки тоді, коли формула (X1ÙX2Ù…ÙXnÙØY) є суперечністю.

Доведення. За теоремою 1, формула Y є логічним висновком формул X1, X2, …, Xn тоді й тільки тоді, коли формула (X1ÙX2Ù…ÙXnY є тавтологією. Звідси Y є логічним висновком формул X1, X2, …, Xn тоді й тільки тоді, коли заперечення Ø((X1ÙX2Ù…ÙXnY)є суперечністю. Але

Ø((X1ÙX2Ù…ÙXnY) º Ø(Ø(X1ÙX2Ù…ÙXnY) º

º Ø(Ø(X1ÙX2Ù…ÙXn))ÙØY º X1ÙX2Ù…ÙXnÙØY.

Таким чином, твердження теореми істинне.

Розглянемо приклад застосування наведених теорем. Доведемо, що формула B є логічним висновком формул A®B і A. Перетворимо формулу (A®BAÙØB:

(A®BAÙØB º (ØAÚBAÙØB º (ØAÙAÙØB)Ú(BÙAÙØB) º 0Ú0 º 0.

Отже, формула (A®BAÙØB суперечлива, і за теоремою 2 формула B є логічним висновком формул A®B і A.

Той факт, що формула B є логічним висновком формул A®B і A, відіграє в математиці дуже важливу роль. Він дозволяє з уже відомих істинних тверджень A®B і A одержати нове істинне твердження B. Зауважимо, що такий спосіб одержання, або виведення нових тверджень у математичній логіці є одним із основних. Таке виведення задається спеціальним правилом виведення, яке має вигляд і назву modus ponens (правило відокремлення). Воно дозволяє одержати висновок B твердження A®B як окреме висловлення, тобто відокремити його вид засновку A. У математичній логіці існують і інші правила виведення, але тут ми їх не розглядаємо.

Підіб'ємо невеличкий неформальний підсумок. Ми познайомилися з двома принципово різними способами одержання нових висловлень. Перший полягає в тому, що ми будуємо складні висловлення з простіших за допомогою логічних зв'язок, а також "перебудовуємо" їх, виконуючи рівносильні перетворення на основі законів. Описані способи побудови та перетворення висловлень складають основу алгебри висловлень.

Другий спосіб одержання нових істинних висловлень полягає в застосуванні згаданих правил виведення до вже відомих істинних висловлень. При цьому формулюється система висловлень-тавтологій, що складає основу для виведення інших. Вони називаються аксіомами, а висловлення, що виводяться, – теоремами. Прикладом аксіоми може служити висловлення AÚØA, яке називається законом виключеного третього. Такий спосіб породження висловлень називається численням висловлень.

Підкреслимо ще раз, що в цьому розділі нашою метою є лише знайомство з основними поняттями і мовою позначень логіки, тому ми не торкаємося її суттєвих питань. Вони розкриваються у багатьох джерелах (див. список рекомендованої літератури).

5. Неформальне знайомство з кванторами

У математиці, як і у повсякденному житті, виникають твердження зі специфічною структурою. Ця структура робить можливими міркування, які не можна відтворити виведенням висловлень. Класичним прикладом таких міркувань є:

Кожна людина смертна.

Сократ – людина.

Звідси випливає, що Сократ смертний.

Очевидно, що висловлення "Сократ смертний" не є логічним висновком засновків "Кожна людина смертна" і "Сократ – людина". Проте коректність наведених міркувань ні в кого не викликає сумніву. Очевидно, що вона зумовлена якимсь особливим змістом слова "кожна".

Введемо додаткові позначення. Нехай x позначає деяку змінну, значення якої можуть мати деяку властивість P. Такі змінні називаються предметними. Висловлення "x має властивість P" позначимо P(x). Наприклад, висловлення "Ціле число x є парним" позначимо E(x). Значення такого висловлення залежить від значення цієї змінної. При x=1 висловлення E(x) хибне, при x=2 – істинне. Замість літери x можна записати її значення, наприклад, E(2).

Речення "Кожне значення x має властивість P", або "Всі значення x мають властивість P", або "Всі x мають властивість P", або "При всіх x справджується властивість P" позначимо записом "x P(x). У цьому записі частина "x називається квантором загальності. Слово "квантор" походить від слова "квантифікація", що означає "кількісне вираження". Продовжуючи приклад про парні числа, зауважимо, що твердження "x E(x) є хибним.

Речення "Існує значення x, що має властивість P", або "Деякі значення x мають властивість P", або "При деякому значенні x справджується властивість P", або "Деякі x мають властивість P" позначимо записом $x P(x). У цьому записі частина $x називається квантором існування. Очевидно, що у прикладі про парні числа твердження $x E(x) є істинним.

Очевидно, що

"x P(x) ® $x P(x),

причому твердження "x P(x) і $x P(x) нерівносильні.

Розглянемо деякі з можливих застосувань пропозиційних зв'язок до виразів із кванторами. Заперечення Ø("x P(x)) читається як "неістинно, що всі значення x мають властивість P", тобто як "існує значення x, що не має властивості P". Таке речення можна позначити як $x ØP(x). Таким чином,

Ø("x P(x)) º $x ØP(x).

Аналогічно

Ø($x ØP(x)) º "x ØP(x).

Висловлення "x P(x) Ù "x Q(x) читається як "всі значення x мають властивість P і всі значення x мають властивість Q", тобто "всі значення x мають властивість P і властивість Q". Таким чином,

("x P(x))Ù("x Q(x)) º "x (P(xQ(x)).

Висловлення "x P(x) Ú "x Q(x) читається як "усі значення x мають властивість P або всі значення x мають властивість Q". З цього речення випливає, що "усі значення x мають властивість P або властивість Q", але ці два речення не рівносильні. Таким чином, "x(P(xQ(x)) є логічним висновком висловлення ("x P(x))Ú("x Q(x)), тобто

(("x P(x))Ú("x Q(x))) ® "x(P(xQ(x)),

але вони нерівносильні.

Приклад. Якщо P(x) позначає речення "x – парне число", а Q(x) – "x – непарне число", то висловлення "x(P(xQ(x)) є істинним, а ("x P(x))Ú("x Q(x)) – хибним.

Насамкінець, розглянемо речення з двома й більше кванторами. Вони з'являються, коли йдеться про властивості пар, трійок тощо змінних. Наприклад, речення "При будь-якому натуральному значенні x існує значення y, таке, що x є дільником y" можна записати як

"x ($y D(x, y)),

де D(x, y) позначає речення "x є дільником y".

Речення вигляду "При будь-якому значенні x справджується, що при будь-якому значенні y істинно A(x, y)" можна позначити так:

"x ("y A(x, y)).

Будемо опускати дужки, записуючи, наприклад, "x $y D(x, y) або "x "y A(x, y). Останній вираз можна прочитати також, як "При будь-якому значенні x і при будь-якому значенні y істинно A(x, y)".

Аналогічно речення вигляду " При будь-якому значенні x і при будь-якому значенні y і при будь-якому значенні z істинно A(x, y, z)" можна позначити виразом

"x "y "z A(x, y, z).

І так далі. Розглянемо, наприклад, твердження великої теореми Ферма:

Рівняння zn=xn+yn, де n – ціле число, більше 2, не має розв'язків у цілих додатних числах.

Одним із можливих записів цього твердження є такий:

"x "y "z "n ((n>2) ® (zn¹xn+yn)).