Смекни!
smekni.com

Происхождение и эволюция звезд и планет в Солнечной системе (стр. 3 из 4)

4.2. Космологическая проблема

На фоне перечисленных сведений об устройстве Вселенной основная космологическая проблема - откуда же взялось первоначальное облако межзвездного вещества, из которого произошли все эти объекты, - остается по-прежнему загадочной. Утверждение "Вселенная существовала всегда" оставляет место для вопроса, всегда ли она была такой, какой мы видим ее сейчас. Ведь если Вселенная сохраняет свои свойства во времени и представляет собой более или менее равномерное распределение звезд в пространстве, то возникает т.н. "фотометрический парадокс": ночное небо должно сиять, поскольку в любом направлении ближе или дальше от нас будет иметься звезда. Но этого мы не видим. Зато мы обнаружили, что имеет место красное смещение. И полагаем, что все галактики разлетаются. Значит, когда-то все они были поблизости друг от друга в какой-то малой области. А в "остальном пространстве" было пусто, и, значит, говорить о том, что равномерное распределение сохранялось постоянно, не приходится. Таким образом, Вселенная эволюционирует. В настоящее время полагают, что примерно 25 млрд. лет назад все вещество было сосредоточено в одной точке. Такая ситуация не позволяет говорить о существовании даже таких основополагающих понятий, как пространство и время. Не было тогда ни пространства, ни времени в обычном смысле. Затем произошел Большой Взрыв, в результате которого образовались протоны, электроны и другие элементарные частицы. Взаимодействие излучения с веществом на определенном этапе привело к тому, что излучение и вещество стали эволюционировать с разным темпом. Об этом мы можем догадаться по существованию так называемого реликтового излучения, характеризующего раннюю стадию развития Вселенной, которое сейчас наблюдается в виде однородного фона длинноволнового излучения, наблюдаемого с любого направления. Частицы стремительно разлетались, взаимодействуя между собой в условиях гигантских температур, постепенно образовались облака, звезды, в недрах которых идут процессы ядерного синтеза тяжелых элементов, и к настоящему времени мы имеем то, что имеем. Но к чему же это все приведет? Все зависит от того, какова средняя плотность вещества во Вселенной. Если она больше некоторого критического значения, то реализуется модель замкнутой Вселенной. Под действием сил гравитационного притяжения расширение прекратится (примерно еще через 25 млрд. лет) и начнется сжатие, в результате которого все вещество вновь сожмется в точку. Если же плотность меньше критической, то гравитационные силы не смогут остановить расширение. Реализуется модель открытой Вселенной. Через 1015 лет звезды остынут, через 1019 они покинут свои галактики, еще через невообразимо большие промежутки времени (если известные сейчас физические законы все еще будут действовать) в результате радиоактивного распада все вещество превратится в железо, еще гораздо позже железные "капли" превратятся в нейтронные звезды и черные дыры, которые через 1067 лет испарятся. Оценить плотность наблюдаемой Вселенной непросто, хотя последние данные указывают на то, что, вероятно, она ниже критической, и Вселенная является открытой.

Около одной из звезд этой Вселенной вращается девять планет, в число которых входит и наша Земля. А как образовались планеты? Является ли существование у звезд планетных систем закономерным или случайным событием? Так, И.Кант и П.Лаплас были сторонниками закономерности возникновения планет. Оба они полагали, что все начиналось с туманности, которая впоследствии превратилась в звезду, вокруг которой вращались планеты. Однако Кант полагал, что туманность была холодной, затем она стала сжиматься, образовалось Солнце, а затем из него выделились планеты. В то время как Лаплас считал, что туманность была горячей, сжимаясь, она сформировала кольца, которые впоследствии стали планетами, а затем центральная часть сжалась еще сильнее и превратилась в звезду. "Критическим вопросом" к каждой из гипотез является вопрос о распределении момента количества движения в Солнечной системе. Составить представление об этой характеристике можно на примере фигуриста, выполняющего вращение. Пока его руки широко разведены в стороны, вращение довольно медленно, часть момента количества движения сосредоточена в них. Если же фигурист плотно прижмет руки к телу, его вращение ускорится. В Солнечной системе 98 % полного момента количества движения приходится на орбитальное движение планет, и только 2 % на вращение Солнца, которое, хотя и содержит подавляющую часть массы всей системы, вращается сравнительно медленно. Стало быть, необходимо объяснить, как могло возникнуть такое перераспределение момента количества движения в процессе образования системы звезда-планеты.

Сторонники случайного образования планет (Джинс, Шмидт, Литтлтон) обсуждали различные варианты столкновения (близкого прохождения) двух звезд или прохождения звезды через облако межзвездной пыли, в результате чего у звезды и могли бы образоваться планеты: либо из части ее вещества, вырвавшегося под действием гравитации второй звезды, либо из вещества облака. Однако, хотя и обоснованная расчетами, эта гипотеза является менее привлекательной, поскольку в этом случае лишь у одной из примерно 100000 звезд могла бы быть планетная система - уж слишком маловероятным является такое столкновение или даже прохождение.

По счастью, в результате наблюдения спектров, излучаемых краями звезд, вращающимися "к нам" или "от нас", было обнаружено, что для звезд вплоть до класса F5 главной последовательности характерно быстрое вращение, а звезды последующих классов вращаются примерно как наше Солнце. При этом, если мысленно "сбросить" все планеты Солнечной системы на Солнце, то из закона сохранения момента количества движения будет следовать, что Солнце должно после этого закрутиться в 50 раз быстрее - в точности так, как быстро вращающиеся звезды. Это наводит на мысль об образовании планетных систем в процессе эволюции звезд: более горячая и мощно излучающая звезда в какой-то момент сбрасывает в окружающее пространство часть своего вещества (это и будут впоследствии планеты), сама замедляет свое вращение и "сдвигается" вдоль главной последовательности в ту ее область, где находится и наше Солнце. Придумали и возможный механизм передачи момента количества движения. При отделении вещества от вращающейся звезды их общее магнитное поле тормозит вращение звезды, а диск отделяющегося вещества постепенно отодвигается от ее поверхности. Эти соображения привели к тому, что по современным оценкам примерно 20% звезд имеют планетные системы. Полагают, что важную роль играют и вспышки сверхновых, стимулирующие образование солнечных туманностей, а также излучение космических мазеров.

Вещество первичной солнечной туманности можно по точкам плавления или кипения разделить на три класса:

* породы (силикаты, окислы металлов, кремний, железо...), температуры плавления порядка тысяч градусов;

* жидкости и льды (химические соединения углерода, водорода, азота и кислорода), температуры кипения порядка сотен градусов;

* газы (H2, He, Ne, Ar).

5. Планеты Солнечной системы

В нашей солнечной системе вблизи Солнца расположены каменистые вещества, далее появляется лед, еще дальше замерзшие метан и аммиак. Различают четыре внутренние планеты (Меркурий, Венера, Земля, Марс) и четыре внешние (Юпитер, Сатурн, Уран, Нептун). За Нептуном находится еще одна маленькая планета - Плутон, который, по-видимому, раньше был луной Нептуна. Между внутренней и внешней группами планет находится пояс астероидов - обломков различного размера от метров до километров в поперечнике. Для внутренних планет характерны радиоактивные процессы, протекающие в недрах. Это приводит к расплавлению вещества в центре, причем тяжелое вещество - железо - оказывается в самом ядре. Газы, выделяющиеся в процессе эволюции планеты, могут быть удержаны ею, только если масса планеты достаточно велика. Так, Меркурий полностью, а Марс в большой степени не удержали свои атмосферы. Внешние же весьма крупные планеты обладают толстыми атмосферами, состоящими в основном изо льдов.

Меркурий представляет собой маленькую планету, величиной с нашу Луну. Он (как, впрочем, и другие планеты) движется вокруг Солнца по эллиптической орбите, причем большая полуось эллипса сама понемногу поворачивается. Забегая несколько вперед, хочется упомянуть, что только после появления теории относительности - одной из самых абстрактных теорий современной науки - была получена расчетная скорость вращения этой полуоси, совпадающая с наблюдаемой. Температура на поверхности Меркурия достигает 3400С.

Венера, долго бывшая надеждой писателей-фантастов на освоение землянами в недалеком будущем, обладает плотной атмосферой из углекислого газа, полной облаков. Эта атмосфера стремительно движется, и скорость ветра нарастает от 3,5 м/с на поверхности до 100м/с вдали от нее. Давление у поверхности достигает 90 атм., а температура 4750С (больше, чем на Меркурии!), что обусловлено парниковым эффектом.