Смекни!
smekni.com

Когнитивная наука Основы психологии познания том 1 Величковский Б М (стр. 102 из 120)

383


сопровождаются активацией структур, расположенных в передних, фронтальных отделах левого полушария, широко известных как другая речевая область — зона Брока (см. 7.3.3).

Неожиданные результаты принесли эксперименты с пациентами, у которых были селективно нарушены процессы артикуляции. Ни задачи на кратковременную память, ни основные тесты понимание речи при этом не были сколько-нибудь серьезно нарушены. В результате возник­ла дискуссия о том, зачем вообще нужна артикуляционная петля. По мнению Бэддели (Baddeley, 1990), она необходима, например, при изу­чении нового языка, когда нужно удерживать пока еще бессмысленные фонетические структуры. Действительно, заучивание парных ассоциа­ций слов родного языка и бессмысленных для этих пациентов речевых звуков (на самом деле это были слова незнакомого им языка) оказалось полностью невозможным. Так как, согласно исследованиям развития памяти (см. 5.4.3), устойчивое использование артикуляции для лучшего запоминания наблюдается у детей лишь начиная примерно с 5 лет, на более ранних этапах развития, при усвоении лексикона родного языка, более важным, по-видимому, является пассивное фонологическое хра­нилище. Мы еще вернемся к спорному вопросу о роли внутренней речи в процессах оперативной обработки информации в конце данного под­раздела.

Не избежал расщепления и второй служебный блок рабочей памя­ти — зрительно-пространственный «блокнот». Его введение в модель было обусловлено фактами запоминания информации в зрительной, или наглядно-образной, форме, например, при визуализации предмет­ных референтов слов. Вопрос состоял в том, какие компоненты — про­странственные или чисто зрительные — играют при этом решающую роль. Бэддели и его сотрудники провели исследование, в котором изу­чалась успешность мысленного движения по краям визуализируемой буквы (тест интерференции Брукса — см. 4.2.2). Одно условие было зрительным, но непространственным — испытуемый должен был па­раллельно с регистрацией поворотов «мысленного взора» отмечать из­менения яркости светящейся панели. Второе условие было незритель­ным, но пространственным. Испытуемый, сидевший с завязанными глазами в темном помещении, пытался освещать качающийся маятник с помощью фонарика. При попадании луча света на прикрепленный к маятнику фотоэлемент менялась высота звукового тона. Оказалось, что первое условие (зрительная интерференция) не влияет на движение в плане зрительного образа, тогда как пространственное отслеживание на слух его полностью нарушает. Так же негативно пространственная за­дача влияла и на успешность использования мнемотехнического «мето­да мест» (см. 5.1.1).

Разделение пространственных (пространственно-действенных) и

зрительных (форма и цвет) компонентов этой подсистемы рабочей па-

384 мяти, таким образом, не вызывает сомнений. Оно подтверждается и


нейрофизиологическими данными, например, результатами трехмер­ного мозгового картирования. Пространственная обработка включает активации задних теменных отделов коры, а также активацию субкор­тикальных (базальные ганглии) и фронтальных (дорзо-латеральная префронтальная кора правого полушария) структур. Последняя интер­претируется как проявление произвольного внимания к местоположе­нию объектов. Собственно зрительные компоненты рабочей памяти ак­тивируют затылочные и нижневисочные доли коры. Эта диссоциация соответствует известному разделению систем локализации (дорзальная система) и идентификации (вентральная система), подробно обсуждав­шемуся нами ранее (см. 3.4.2), или уровням С и D, как эти системы были обозначены в теории построения движений Бернштейна (см. 1.4.3 и 8.4.3).

Центральный исполнитель — главный и наиболее спорный компо­нент рабочей памяти. По ироническому замечанию специалиста по эволюции поведения Марлина Дональда (Donald, 1991), центральный исполнитель подобен Будде (или, может быть, гомункулусу?), «восседа­ющему на вершине процессов оперативного запоминания и оживляю­щемуся лишь тогда, когда на его рабочий стол попадают вопросы, с ко­торыми не смогли справиться когнитивные психологи». Первоначально этот блок понимался несколько диффузно, как резервуар центрального пула ресурсов и одновременно структура, управляющая стратегиями распределения внимания. В 1990-е годы были предприняты попытки более детального анализа центральных процессов управления (экзеку-тивных процессов) с помощью специально подобранных задач. Важную роль сыграло сравнение решаемых центральным исполнителем задач с функциями фронтальных (лобных) долей. Классические описания воз­никающего при поражениях этих областей коры лобного синдрома, дан­ные в работах А.Р. Лурия и других авторов, подчеркивают крайнюю не­устойчивость, отвлекаемость и одновременно ригидность внимания, неспособность понять суть сложных взаимоотношений, неумение спра­виться с новым типом задач — при относительно нормальном выпол­нении рутинных заданий15. Все эти признаки могут быть своего рода негативной характеристикой центрального исполнителя.

Основная задача, используемая для экспериментального тестирова­ния работы центрального исполнителя, заключается в продуцировании возможно более случайных последовательностей чисел или букв из

15 Как мы отмечали выше, в настоящее время под влиянием исследований рабочей
памяти для обозначения этого синдрома чаще используется термин дезэкзекутивный син­
дром
(см. 4.4.2 и 8.1.3). Изменение традиционного названия обусловлено нежеланием
априорной привязки подобной поведенческой картины к фронтальным областям коры,
поскольку аналогичные изменения, в принципе, могут быть вызваны нарушениями в ра­
боте других анатомических структур (например, базальных ганглиев, связанных с фрон­
тальной корой рядом петлеобразных соединений) 385

некоторого, заранее заданного набора (допустим, от 1 до 9 или от 1 до 15). При выполнении подобной задачи случайного генерирования труд­но удержаться от повторений или реализации определенной стратегии перебора символов. Все это уменьшает случайность (то есть повышает избыточность — см. 2.1.1) генерируемых последовательностей. Степень случайности может легко оцениваться компьютером. Успешное решение данной задачи, следовательно, предполагает постоянную смену стратегий извлечения информации из памяти и их рекомбинации, по типу тестов на переключение внимания с одной задачи на другую, но с дополнитель­ной существенной нагрузкой на память (см. 4.4.2). Одновременное вы­полнение вторичных заданий приводит к снижению показателя случай­ности. Например, при необходимости запоминания ряда символов случайность продуцируемых последовательностей линейно снижается с увеличением количества таких удерживаемых в памяти символов.

Новые данные, однако, говорят о том, что задача случайного генери­рования не является тестом центрального исполнителя в чистом виде. Так, постоянное присутствие исходного набора элементов в поле зрения испытуемых позволяет им генерировать более случайные последователь­ности, а значит, решение этой задачи зависит также и от работы «зри­тельно-пространственного блокнота». Взаимодействие центральных, амодальных механизмов внимания и мышления именно со зрительно-пространственными репрезентациями особенно заметно в случае таких задач, как нахождение оптимального хода в той или иной шахматной позиции (см. 8.3.3). Характерно, что в случае испытуемых-экспертов (начиная с уровня международного мастера и выше) нагрузка на арти­куляционные механизмы перестает влиять здесь на качество и скорость принятого решения. В большом количестве других ситуаций, подобных пониманию текста и, в особенности, ведению беседы, на первый план выступают взаимодействия многоуровневых речевых процессов и меха­низмов социального интеллекта (см. 7.1.2).

Проверка связи рабочей памяти с функциями фронтальных долей коры, проводившаяся как с помощью трехмерного мозгового картиро­вания процессов решения задач нормальными испытуемыми, так и пу­тем нейропсихологического анализа отдельных клинических случаев, выявила неоднородность возможных компонентов центрального испол­нителя. Явно различной оказалась локализация центральных механиз­мов удержания и активного преобразования амодальной перцептивной информации. В рамках префронтальных структур были также обнару­жены не только амодальные, но и модально-специфические (прежде всего зрительные) механизмы, хотя этот последний результат, получен­ный в нейрофизиологических исследованиях на приматах, иногда оспа­ривается психологами, изучающими память человека.

В последние годы наметилось дополнительное разделение цент­рального исполнителя по принципу диссоциации, с одной стороны, механизмов удержания и обработки материала, а с другой — процессов, ответственных за принятие решений (см. 8.4.2). Дело в том, что именно 386


принятие решений, а не традиционные функции внимания или памя­ти, оказывается селективно нарушенным у некоторых групп пациентов с фронтальными поражениями. Для этих пациентов характерна выра­женная беспомощность как раз в ситуациях выбора одного из несколь­ких возможных вариантов действия. Более того, механизмы принятия решения и собственно целенаправленной реализации уже принятого ре­шения, по-видимому, также требуют специального различения. (Оно обсуждается в современных исследованиях мотивации как различение процессов, локализованных по разные стороны мотивационно-волево-го «Рубикона» — см. Хекхаузен, 2003.)