но-следственных связей. На место этого понятия выдвигается представление о круговой причинности. Например, в физиологических исследованиях картезианское понятие рефлекторной дуги было еще в 1930-е годы, то есть в период доминирования основанных на схемах «стимул-реакция» бихевиористских концепций и до официального появления кибернетики, заменено представлением о рефлекторном кольце, причем произошло это практически одновременно на Востоке (H.A. Бернш-тейн) и на Западе (Виктор фон Вайцекер). Так яблоки, по словам Гёте, одновременно падают осенью в разных садах.
Начиная с 1942 года в США стали практически регулярно происходить встречи, в которых участвовали ведущие кибернетики, лингвисты, физиологи и психологи. Междисциплинарные конференции и семинары, на которых закладывалась основа для совместных исследований, в духе последующей когнитивной науки, участились с окончанием войны и в других странах, в частности, в Советском Союзе. В 1950-е годы появились возможности и для прямых международных контактов разрозненных до того времени национальных групп. Из многочисленных достижений и нововведений кибернетики в психологию проникли первоначально, пожалуй, только положения статистической теории связи, изложенной в доступной для психологов форме Шенноном и Уивером (Shannon & Weaver, 1949). Эта теория — она стала известна потом как теория информации — предлагала простой формальный аппарат для оценки количества информации, содержащейся в том или ином сообщении.
Количество информации Н, передаваемое сообщением о реализации одного из N равновероятных событии, определяется по формуле:
Количество информации измеряется, таким образом, в двоичных логарифмических единицах, или битах. Передача количества информации, равного одному биту, позволяет уменьшить неопределенность ситуации вдвое, двух битов — вчетверо и т.д. Множество всех возможных событий, естественно, заранее должно быть известно на принимающей стороне. Приведенная выше формула описывет максимально возможное количество информации, достигаемое в случае, когда система событий совершенно случайна. Если система событий структурирована, так что разные события возникают с различной вероятностью/>, то среднее количество информации для множества из N событий определяется несколько более сложной формулой:
Именно эта информация Я при продолжительном предъявлении сигналов определяет нагрузку на канал связи. Разница между максимально
95
96
возможным и фактическим количеством информации определяет далее так называемую избыточность системы событий. Избыточность является ничем иным, как мерой организации такой системы, степени ее отличия от совершенно случайного, хаотичного состояния. Важным источником избыточности в канале связи являются, наряду с абсолютной вероятностью возникновения событий, условные вероятности следования события друг за другом. Так, поскольку появление, а главное, следование отдельных фонем друг за другом в звуках человеческой речи далеко не равновероятны, общая избыточность системы фонем (или же букв при письме и чтении) естественных языков оказывается довольно большой, примерно равной 70%.
С инженерной точки зрения, можно говорить далее о различной степени оптимальности процессов кодирования информации. Оптимальным является такое кодирование событий, например в виде последовательностей двоичных символов «0» и «1», при котором более вероятные события будут представлены, более короткими цепочками символов. Интересно, что соответствующая эмпирическая зависимость — чем частотнее слово в языке, тем оно короче — действительно известна в лингвистике, где она называется «вторым законом Ципфа». При оптимальном кодировании канал связи, имеющий пропускную способность С бит/с, будет передавать С/Н двоичных символов в секунду. Если кодирование не оптимально, то фактическая скорость передачи информации уменьшится. Она в принципе никогда не может превзойти пропускную способность канала С, а тем более стать бесконечной (Яглом, Яглом, 1973).
Первой претеоретической метафорой будущей когнитивной психологии стало, таким образом, понимание человека как канала связи с ограниченной пропускной способностью. Это понимание буквально совпадало с тем специфическим аспектом рассмотрения возможностей человека, который был характерен для проводившихся еще в годы Второй мировой войны инженерно-психологических исследований. Поскольку экстремальные условия войны и начавшегося сразу после нее военно-индустриального соревнования Востока и Запада вновь и вновь обнаруживали специфические слабости человеческого звена в системе человек—машина, необходим был единый язык описания ограничений как техники, так и самого человека-оператора. Теория информации была воспринята многими психологами и инженерами как своего рода лапласовская «мировая формула» (см. 1.1.2), позволяющая единообразно описать возможности не только технических звеньев человеко-машинных систем, но и большое количество собственно психологических феноменов.
2.1.2 Инженерная психология и ее эволюция
В силу их значительного и продолжающегося влияния на когнитивный подход, нам следует хотя бы кратко остановиться здесь на особенностях и эволюции исследований «человеческого фактора» {humanfactorengineering), получивших в Западной Европе и СССР название инженерной психологии. Появление этой области исследований было вызвано целым рядом случаев отказа человеко-машинных систем, произошедших по вине человека. Один из наиболее драматических, хотя и малоизвестных эпизодов случился в декабре 1941 года на американской военно-морской базе Перл-Харбор, когда инженеры, обслуживавшие один из первых образцов только что поступивших на вооружение радиолокаторов, отчетливо увидели на экране отраженные от приближающихся японских самолетов сигналы, но просто не поверили, что такое количество сигналов возможно, и решили отправить аппаратуру на ремонт вместо того, чтобы сообщить в штаб флота о возможном нападении.
Потребовалось целое десятилетие, чтобы научиться аккуратно описывать подобные ситуации. Для этого инженерными психологами наряду с теорией информации стала использоваться заимствованная из радиотехники и психофизики теория обнаружения сигнала (Wald, 1950). Благодаря ряду допущений, эта теория позволила описать работу оператора в задачах на обнаружение с помощью всего лишь двух параметров: чувствительности (а") и критерия (β). Если первый параметр описывает сенсорные возможности различения сигнала на фоне шума, то второй, как мы сказали бы сегодня, связан именно с когнитивными переменными: представлением о вероятности появления сигнала, а также оценкой относительной «цены» последствий двух возможных и неизбежных в ситуации обнаружения ошибок — пропуска сигнала и ложных тревог. На основании этих когнитивных переменных формируется готовность оператора при прочих равных условиях подтверждать наличие сигнала (низкий, или либеральный критерий) либо воздерживаться от такого подтверждения (высокий, или консервативный критерий). С формальной точки зрения, именно завышенное положение критерия помешало операторам в Перл-Харборе подтвердить приближение воздушных целей.
На рис. 2.1 показаны два идеализированных примера ситуации обна
ружения сигнала для простейшего случая, при котором появление сигна
ла не меняет разброса значений распределения шума, а просто сдвигает
это распределение вправо по оси величин регистрируемой в сенсорных
каналах активности. Распределение шума (аналог спонтанной сенсорной
активности) предполагается нормальным и стандартным, так что его сред
нее равно нулю, а стандартное отклонение — единице. Верхний график
описывает ситуацию обнаружения слабого сигнала, сдвигающего рас
пределение шума лишь на 0,5 его стандартного отклонения. Величина 0,5
и есть значение параметра чувствительности, обычно обозначаемого как
d' (произносится «дэ штрих»). Нижний график иллюстрирует обнаруже-„_
Ρ=2,0сигнал и шум |
шум |
d" сенсорное возбуждение