Таблица 2.1. Наиболее известные синдромы клинической нейропсихологии
Синдром | Область нарушений |
Речевые процессы (см. 7.1.3 и 7.3.3) | |
Афазия Брока | Произношение и грамматическая правильность речи |
Афазия Вернике | Понимание речи, использование подходящих слов |
Проводниковая афазия | Повторение услышанных (и понятых) слов и предложений |
Аномия | Нахождение слова в памяти |
Словестная глухота | Узнавание слова на слух и его повторение |
Алексия/Дислексия | Чтение, понимание и повторение написанного |
Аграфия | Различные аспекты навыка письменной речи |
Другие символические координации | |
Акалькулия | Математические способности, счет в уме |
Восприятие и сенсомоторные процессы (см. 3.3.1 и 3.4.2) | |
Агнозия | Узнавание предметов в той или иной модальности |
Прозопагнозия | Зрительное узнавание лиц |
Апраксия | Произвольные движения и сенсомоторные навыки |
Внимание (см. 3.4.2 и 4.4.3) | |
Синдром Балинта | Интеграция локальных впечатлений в целостный образ |
Игнорирование полупространства | Внимание к предметам, латерализованным в пространстве |
Память (см. 5.1.1 и 5.3.2) | |
Амнезия | Процессы произвольного припоминания и узнавания |
Мышление и планирование деятельности (см. 4.4.2, 5.2.3 и 8.1.3) | |
Лобный/Дезэкзе-кутивный синдром | Произвольный контроль действий, достижение целей, а также их смена в случае изменения обстоятельств |
В связи с тем, что поиск двойных диссоциаций — это весьма распространенная стратегия в современных когнитивных исследованиях, остановимся на ней несколько подробнее. Этот прием предназначен для контроля правильности интерпретации отдельных случаев. Рассмотрим конкретную проблему. В последние годы описано несколько случаев пациентов с интересной формой семантической агнозии. Эти пациенты способны узнавать и семантически классифицировать неодушевленные предметы, но испытывают сильные затруднения в узнавании живых существ. Можно ли на основании этих данных сделать вывод о том, что семантическая память и ее мозговые механизмы разделены на две подструктуры по принципу живой—неживой? Очевидно, такой вывод был бы преждевременным, поскольку узнавание живых существ может быть просто более сложным процессом, превышающим ослабленные познавательные возможности пациентов с поражениями мозга. Поэтому если бы удалось найти двойную (парную) диссоциацию — один или более случаев сохранного узнавания живых существ и трудностей с узнаванием неодушевленных предметов, то о возможном расщеплении механизмов семантической памяти можно было бы говорить с большей степенью определенности (см. 6.1.3).
Первоначально в когнитивной психологии роль нейропсихологи-ческих данных была связана с обсуждением отдельных, особенно ярких клинических случаев. Однако вскоре стало ясно, что они могут играть важную роль и при проверке справедливости некоторых, подчас весьма общих психологических теорий. Так, Т. Шаллис и Э. Уоррингтон (Shallice& Warrington, 1970) описали пациента, у которого есть долговременная, но нарушена кратковременная память. Существование такого нарушения означает, что едва ли может быть правильной распространенная в когнитивной психологии трактовка запоминания, в которой информация, чтобы попасть в блок долговременного хранения, обязательно должна пройти через блок кратковременной памяти (см. 5.2.1).
Аналогично и несколько ранее А. Р. Лурия (1968) описал знаменитого мнемониста Ш., исследования памяти которого заставляют усомниться в том, что способности к кратковременному запоминанию всегда ог-144
раничены «магическим числом» Миллера17. На самом деле, между кратковременной и долговременной памятью Ш. не было большого различия (см. 5.1.1). Следует заметить, что описание личности и специфических возможностей (а также ограничений) памяти, восприятия и мышления Ш., конечно же, не было «клиническим случаем» в прямом смысле этого слова, однако по характеру анализа оно остается одним из лучших исследований нейропсихологического типа (casestudy, Einzelfallanalyse) в мировой научной литературе.
С возникновением гипотезы модулярной организации познания (см. 2.3.2) в середине 1980-х годов нейропсихологическим данным как таковым начало уделяться повышенное внимание. Более того, многие модели познавательных процессов стали в явном виде строиться как нейрофизиологические модели, причем не только нормального, но и аномального функционирования мозга. Серьезной проблемой на этом пути оказался неэкспериментальный, корреляционный характер ней-ропсихологических данных. Всякое мозговое поражение — это своего рода уникальный «эксперимент природы». У клинического нейропси-холога нет возможности выполнить требования, необходимые для подлинного эксперимента: произвольно воспроизводить поражение или создать контрольную ситуацию, которая бы отличалась от исходной исключительно фактом данного поражения. Поэтому в случае клинических данных всегда остается вероятность того, что наблюдаемая картина в какой-то степени обусловлена особенностями, сложившимися еще до возникновения патологических изменений.
Конечно, если бы было возможно временно «выключать» и затем «включать» без каких-либо последствий отдельные мозговые структуры или, быть может, даже «видеть» их функционирование по ходу нормального решения задач, то можно было бы надеяться на получение значительно более надежных и общих результатов, чем при анализе клинических данных. Такие методы действительно появились в течение последних 10—15 лет, став особенно мощным стимулом нейропси-хологической и нейрофизиологической переориентации заметной час-
17 Об этом же могут говорить наблюдения канадского нейрохирурга У. Пенфидда, разти современной научной психологии и когнитивных исследований в целом. Речь идет о создании и начавшемся широком применении новых методов трехмерного картирования мозга и его функциональных состояний {brainimaging). Разработка этих методов была отмечена в 2003 году присуждением Нобелевской премии. Мозговое картирование используется сегодня как в клинических, так и в чисто исследовательских целях, в частности, во все большем числе относительно традиционных психологических экспериментов, проводимых с обычными испытуемыми.
2.4.2 Новые методы и старые проблемы
Вплоть до самого последнего времени существовали две основные группы методов изучения нейрофизиологических механизмов invivo: анализ ЭЭГ и микроэлектродное отведение активности отдельных нейронных структур. Первая группа методов использует регистрацию интегральных электрических ритмов мозга, или электроэнцефалограммы (ЭЭГ). Это делается с помощью внешних, наложенных на кожу головы испытуемых электродов и не требует при использовании соответствующих усилителей сигнала создания особых условий, выходящих за рамки обычного лабораторного окружения. Вместе с тем, как правило, картина регистрируемых колебаний столь зашумлена, что по ней невозможно прямо судить о влиянии отдельных экспериментальных переменных, а лишь о глобальных стадиях изменения функциональных состояний, таких как бодрствование или сон. Поэтому в когнитивных исследованиях получила распространение модификация, известная как метод регистрации вызванных потенциалов мозга (ERPs— event-relatedpotentials).
В этом случае предъявление стимула многократно повторяется, а затем сегменты записи ЭЭГ, синхронизированные с моментом отдельных предъявлений, накладываются друг на друга и суммируются. Случайные, разнонаправленные колебания компенсируют друг друга, и вырисовывается электрический ответ коры мозга на само стимульное событие. Этот ответ демонстрирует ряд характерных особенностей, например, негативное отклонение потенциалов через 100—200 мс после предъявления (этот пик в картине вызванных потенциалов получил название N1) и положительное отклонение примерно через 300 мс (РЗ). По расположению и амплитуде этих отклонений, несколько отличающихся в случае разных областей коры и для разных модальностей стимуляции (рис. 2.13), можно в определенной степени судить о временной развертке процессов переработки информации. Данный метод позволил подойти к решению некоторых фундаментальных проблем когнитивной психологии. Так, сравнение вызванных потенциалов на акустические стимулы в условиях направленного внимания и при его отвлечении показало, что внимание усиливает компоненты вызванных 146 потенциалов уже через 40—60 мс после стимульного события (Woldorff