3.1.2 Восприятие движения и времени
Чтобы перейти к обсуждению восприятия движения, необходимо кратко рассмотреть две общие особенности перцептивных процессов: их интермодальность и их опору на целую иерархию выделяемых в окружении пространственных систем отсчета. Несмотря на анатомические различия, разные сенсорные модальности работают в отношении оценки пространственных характеристик как одна функциональная система (см. 1.4.2). Так, варьирование интенсивности билатерально предъявляемых стимулов приводит к аналогичным изменениям направления не только в зрительной, слуховой и осязательной модальностях, но даже в обонятельной и вкусовой (Shipley & Rowlings, 1971). Конечно, при этом сохраняются различия. Например, слуховая локализации обычно быстрее, чем зрительная, но ее точность ниже, в частности, на слух мы не можем определить, находится ли источник звука перед нами или за нашей спиной. Отдельные модальности можно уподобить группам инструментов симфонического оркестра, исполняющих в разном ключе и с вариациями одну и ту же мелодию. Эта избыточность обеспечивает высокую надежность восприятия пространства, служащего опорой как для других перцептивных процессов, так и для решения собственно когнитивных задач.
Сам субъект восприятия также оказывается одним из локализуемых
компонентов окружения. Кожная, мышечная и, в особенности, сустав-
но-мышечная чувствительность традиционно рассматриваются как ос-
174 нова восприятия положения собственного тела и его движений — про-
Рис. 3.3. Примеры динамических градиентов Гибсона.
приоцепции и кинестезии. Речь идет о широкой интеграции ощущений взаимного расположения частей тела («схема тела» — уровень В) и положения тела во внешнем окружении («пространственное поле» — уровень С, по классификации Бернштейна — см. 1.4.3). Имея в виду интермодальность этих процессов, Гибсон писал о «зрительной кинестезии», а Бернштейн о «проприоцепции в широком смысле слова». Гибсон, длительное время проводивший исследования для ВВС США, выделил зрительные источники информации о собственных движениях, описав знаменитые динамические градиенты оптического потока (рис. 3.3). Скорость и целостная геометрия подобных трансформаций позволяют определить характер движений. Например, положение точки, остающейся неподвижной внутри потока оптического расширения {focus of expansion, FoE), специфицирует направление движения наблюдателя6. Пространственное зрение взаимодействует и со значительно более древней вестибулярной системой. В частности, общая ориентация видимых контуров позволяет выделять информацию, соответствующую критическим для работы вестибулярной системы данным о направлении гравитационной вертикали.
175
Характерной особенностью восприятия положения и движения является зависимость от пространственных систем отсчета. Роль систем отсчета можно проиллюстрировать следующим примером. Один из основных инструментов в кабине самолета — индикатор бокового наклона, или «авиагоризонт». Долгое время российские и западные авиастроители отдавали предпочтение разным вариантам отображения информации об этой переменной — «виду снаружи» и, соответственно, «виду изнутри» (см. рис. 3.4, А и Б). Этот спор объясняется присутствием различных систем отсчета, связанных с кабиной самолета и с внешним окружением. Зрительно стабильной кажется кабина, тогда как когнитивно, а с учетом вестибулярной афферентации также и сенсорно — земная поверхность. Нельзя ли использовать эти частные подходы для создания более гибкой системы отображения? Решение связано с учетом особенностей работы вестибулярной системы: из-за быстрой адаптации ее рецепторов вестибулярная система реагирует не столько на положение головы в пространстве, сколько на изменение этого положения (Величковский, Зинченко, Лурия, 1973). Поэтому характер отображения можно поставить в зависимость от темпа изменения наклона. При продолжительном полете без выраженных изменений наклона используется «вид изнутри», при резких изменениях — «вид снаружи», который постепенно вновь трансформируется (путем вращения дисплея, как показано на рис. 3.4В) в «вид изнутри» (Wickens, Gordon & Liu, 1998).
176
Рис. 3.4. Три различных варианта отображения информации о боковом наклоне самолета: А. «Вид снаружи»; Б. «Вид изнутри»; В. Комбинированный инструмент, сочетающий оба способа отображения в зависимости от темпа изменения наклона.
Обратимся, наконец, к рассмотрению восприятия движения. Прежде всего оно, безусловно, имеет такой же непосредственный характер, как и пространственная локализация, что связано с особой биологической значимостью тех и других процессов. Хорошо известно, например, что нейроны зрительной системы реагируют главным образом на движение стимула внутри соответствующих рецептивных зон. Следует, однако, очень осторожно использовать эти нейрофизиологические данные с точки зрения объяснения восприятия движения, так как критическую роль в последнем играют процессы детекции изменения положения объекта относительно внешних систем отсчета, а не перемещение стимула по сетчатке само по себе.
Так, при полном устранении зрительного контекста (в темноте или в другом гомогенном окружении) возникает иллюзия автокинетического движения: неподвижная и аккуратно фиксируемая цель начинает казаться движущейся то в одном, то в другом направлении, совершая «экскурсии», амплитуда которых может достигать десятка угловых градусов. Вариантом управляемого автокинеза является так называемое индуцированное движение, детально изученное Карлом Дунке-ром (Dunker, 1929). При этом в гомогенном поле наблюдателю предъявляется неподвижный объект с окружающей его рамкой. Если рамка — единственная видимая система отсчета — начинает двигаться, то наблюдатель воспринимает движение фиксируемого объекта в противоположную сторону. Это восприятие сопровождается отчетливым впечатлением отслеживания иллюзорного движения глазами, головой и даже всем корпусом!
Ситуация возникновения индуцированного движения служит удобной моделью для иллюстрации общих особенностей восприятия. Для получения особенно сильного эффекта индуцированного движения вместо рамки часто используются вертикальные полосы, заполняющие практически все зрительное поле. При этом может наблюдаться дополнительный эффект, свидетельствующий о непосредственной связи видимого движения с особенностями восприятия пространства. Когда испытуемый устает и перестает аккуратно фиксировать полосы или же специально получает инструкцию фиксировать точку, находящуюся перед фоном, может возникать бинокулярная фузия сдвинутых на один период полос. В результате большей конвергенции осей глаз (вергент-ные движения глаз калибрируют оценки удаленности и величины — см. 3.1.1) фон феноменально приближается к наблюдателю, ширина полос сужается и, что существенно, соответственно замедляется скорость индуцированного движения (Velichkovsky & van der Heijden, 1994).
Точно так же и пороги обнаружения реального движения в обычном структурированном окружении оказываются зависящими не от угловой, а от абсолютной скорости. Иными словами, движение воспринимается нами в трехмерном пространстве, с учетом удаленности объектов. Например, при бинокулярных условиях наблюдения пороги обнаружения
177
L
смещения объектов, горизонтально движущихся в противофазе в каждом из монокулярных полей зрения, оказываются выше порогов восприятия такого же движения только одним глазом. Это связано с тем обстоятельством, что в условиях стереоскопического зрения происходит фузия стимулов с меняющейся (из-за разной направленности монокулярных векторов смещения) диспаратностью и воспринимается движение объекта в глубину — по направлению от или к наблюдателю. Несмотря на практически идентичную картину стимуляции самой сетчатки, пороги обнаружения движения меняются, так как разрешающая способность восприятия движения в третьем измерении пространства не так высока, как для движения во фронто-параллельной плоскости7.
Особенно интересным индуцированное движение становится в случае двух и более систем отсчета. Предположим, что наблюдатель фиксирует в гомогенном окружении неподвижный объект, вокруг которого расположена рамка средних размеров и еще одна, окружающая ее внешняя рамка. Пусть теперь обе рамки начинают двигаться, причем в разных направлениях, скажем, внутренняя рамка направо, а внешняя вверх. В каком направлении будет «перемещаться» фиксируемый объект? На основании знакомства с физикой (а именно принципом параллелограмма, введенным в науку Галилеем — см. 6.4.3) можно было бы ожидать, что при этом будет происходить своего рода векторное суммирование, ведущее к возникновению иллюзорного движения объекта в направлении левого нижнего угла поля зрения. Но в восприятии происходит нечто иное. Центральный объект кажется движущимся строго влево. Вместе с этим средняя рамка и движущийся в ней объект как целое смещаются вниз.