Смекни!
smekni.com

Когнитивная наука Основы психологии познания том 1 Величковский Б М (стр. 46 из 120)

3.1.2 Восприятие движения и времени

Чтобы перейти к обсуждению восприятия движения, необходимо крат­ко рассмотреть две общие особенности перцептивных процессов: их интермодальность и их опору на целую иерархию выделяемых в окруже­нии пространственных систем отсчета. Несмотря на анатомические различия, разные сенсорные модальности работают в отношении оцен­ки пространственных характеристик как одна функциональная система (см. 1.4.2). Так, варьирование интенсивности билатерально предъявля­емых стимулов приводит к аналогичным изменениям направления не только в зрительной, слуховой и осязательной модальностях, но даже в обонятельной и вкусовой (Shipley & Rowlings, 1971). Конечно, при этом сохраняются различия. Например, слуховая локализации обычно быст­рее, чем зрительная, но ее точность ниже, в частности, на слух мы не можем определить, находится ли источник звука перед нами или за на­шей спиной. Отдельные модальности можно уподобить группам инст­рументов симфонического оркестра, исполняющих в разном ключе и с вариациями одну и ту же мелодию. Эта избыточность обеспечивает вы­сокую надежность восприятия пространства, служащего опорой как для других перцептивных процессов, так и для решения собственно когни­тивных задач.

Сам субъект восприятия также оказывается одним из локализуемых

компонентов окружения. Кожная, мышечная и, в особенности, сустав-

но-мышечная чувствительность традиционно рассматриваются как ос-

174 нова восприятия положения собственного тела и его движений — про-




Рис. 3.3. Примеры динамических градиентов Гибсона.

приоцепции и кинестезии. Речь идет о широкой интеграции ощущений взаимного расположения частей тела («схема тела» — уровень В) и по­ложения тела во внешнем окружении («пространственное поле» — уро­вень С, по классификации Бернштейна — см. 1.4.3). Имея в виду интер­модальность этих процессов, Гибсон писал о «зрительной кинестезии», а Бернштейн о «проприоцепции в широком смысле слова». Гибсон, длитель­ное время проводивший исследования для ВВС США, выделил зритель­ные источники информации о собственных движениях, описав знаме­нитые динамические градиенты оптического потока (рис. 3.3). Скорость и целостная геометрия подобных трансформаций позволяют опреде­лить характер движений. Например, положение точки, остающейся не­подвижной внутри потока оптического расширения {focus of expansion, FoE), специфицирует направление движения наблюдателя6. Простран­ственное зрение взаимодействует и со значительно более древней вести­булярной системой. В частности, общая ориентация видимых контуров позволяет выделять информацию, соответствующую критическим для работы вестибулярной системы данным о направлении гравитационной вертикали.


6 Использование зрительной информации для контроля собственных локомоций за­висит от способа перемещения в пространстве. При движениях с помощью технических средств решающая роль действительно принадлежит динамическим градиентам: изме­няй одну только оптическую плотность объектов в периферии поля зрения (например, увеличивая плотность дорожной разметки), можно значительно более надежно заставить водителей тормозить на перекрестках, чем расставляя предупреждающие знаки. При пе­ремещениях, так сказать, «на своих двоих» роль обнаруженных Гибсоном механизмов сни­жается и ведущим оказывается просто видимое направление на цель.

175


Характерной особенностью восприятия положения и движения яв­ляется зависимость от пространственных систем отсчета. Роль систем отсчета можно проиллюстрировать следующим примером. Один из ос­новных инструментов в кабине самолета — индикатор бокового наклона, или «авиагоризонт». Долгое время российские и западные авиастроите­ли отдавали предпочтение разным вариантам отображения информации об этой переменной — «виду снаружи» и, соответственно, «виду изнут­ри» (см. рис. 3.4, А и Б). Этот спор объясняется присутствием различных систем отсчета, связанных с кабиной самолета и с внешним окружением. Зрительно стабильной кажется кабина, тогда как когнитивно, а с учетом вестибулярной афферентации также и сенсорно — земная поверхность. Нельзя ли использовать эти частные подходы для создания более гибкой системы отображения? Решение связано с учетом особенностей работы вестибулярной системы: из-за быстрой адаптации ее рецепторов вести­булярная система реагирует не столько на положение головы в простран­стве, сколько на изменение этого положения (Величковский, Зинченко, Лурия, 1973). Поэтому характер отображения можно поставить в зависи­мость от темпа изменения наклона. При продолжительном полете без выраженных изменений наклона используется «вид изнутри», при рез­ких изменениях — «вид снаружи», который постепенно вновь трансфор­мируется (путем вращения дисплея, как показано на рис. 3.4В) в «вид изнутри» (Wickens, Gordon & Liu, 1998).





176


Рис. 3.4. Три различных варианта отображения информации о боковом наклоне самоле­та: А. «Вид снаружи»; Б. «Вид изнутри»; В. Комбинированный инструмент, сочетающий оба способа отображения в зависимости от темпа изменения наклона.


Обратимся, наконец, к рассмотрению восприятия движения. Прежде всего оно, безусловно, имеет такой же непосредственный ха­рактер, как и пространственная локализация, что связано с особой био­логической значимостью тех и других процессов. Хорошо известно, на­пример, что нейроны зрительной системы реагируют главным образом на движение стимула внутри соответствующих рецептивных зон. Сле­дует, однако, очень осторожно использовать эти нейрофизиологические данные с точки зрения объяснения восприятия движения, так как кри­тическую роль в последнем играют процессы детекции изменения по­ложения объекта относительно внешних систем отсчета, а не переме­щение стимула по сетчатке само по себе.

Так, при полном устранении зрительного контекста (в темноте или в другом гомогенном окружении) возникает иллюзия автокине­тического движения: неподвижная и аккуратно фиксируемая цель на­чинает казаться движущейся то в одном, то в другом направлении, совершая «экскурсии», амплитуда которых может достигать десятка угловых градусов. Вариантом управляемого автокинеза является так на­зываемое индуцированное движение, детально изученное Карлом Дунке-ром (Dunker, 1929). При этом в гомогенном поле наблюдателю предъяв­ляется неподвижный объект с окружающей его рамкой. Если рамка — единственная видимая система отсчета — начинает двигаться, то на­блюдатель воспринимает движение фиксируемого объекта в противо­положную сторону. Это восприятие сопровождается отчетливым впе­чатлением отслеживания иллюзорного движения глазами, головой и даже всем корпусом!

Ситуация возникновения индуцированного движения служит удоб­ной моделью для иллюстрации общих особенностей восприятия. Для получения особенно сильного эффекта индуцированного движения вме­сто рамки часто используются вертикальные полосы, заполняющие практически все зрительное поле. При этом может наблюдаться допол­нительный эффект, свидетельствующий о непосредственной связи види­мого движения с особенностями восприятия пространства. Когда испы­туемый устает и перестает аккуратно фиксировать полосы или же специально получает инструкцию фиксировать точку, находящуюся пе­ред фоном, может возникать бинокулярная фузия сдвинутых на один период полос. В результате большей конвергенции осей глаз (вергент-ные движения глаз калибрируют оценки удаленности и величины — см. 3.1.1) фон феноменально приближается к наблюдателю, ширина полос сужается и, что существенно, соответственно замедляется скорость ин­дуцированного движения (Velichkovsky & van der Heijden, 1994).

Точно так же и пороги обнаружения реального движения в обычном структурированном окружении оказываются зависящими не от угловой, а от абсолютной скорости. Иными словами, движение воспринимается нами в трехмерном пространстве, с учетом удаленности объектов. На­пример, при бинокулярных условиях наблюдения пороги обнаружения

177


L


смещения объектов, горизонтально движущихся в противофазе в каж­дом из монокулярных полей зрения, оказываются выше порогов воспри­ятия такого же движения только одним глазом. Это связано с тем об­стоятельством, что в условиях стереоскопического зрения происходит фузия стимулов с меняющейся (из-за разной направленности монокуляр­ных векторов смещения) диспаратностью и воспринимается движение объекта в глубину — по направлению от или к наблюдателю. Несмотря на практически идентичную картину стимуляции самой сетчатки, пороги обнаружения движения меняются, так как разрешающая способность восприятия движения в третьем измерении пространства не так высока, как для движения во фронто-параллельной плоскости7.

Особенно интересным индуцированное движение становится в случае двух и более систем отсчета. Предположим, что наблюдатель фиксирует в гомогенном окружении неподвижный объект, вокруг кото­рого расположена рамка средних размеров и еще одна, окружающая ее внешняя рамка. Пусть теперь обе рамки начинают двигаться, причем в разных направлениях, скажем, внутренняя рамка направо, а внешняя вверх. В каком направлении будет «перемещаться» фиксируемый объект? На основании знакомства с физикой (а именно принципом па­раллелограмма, введенным в науку Галилеем — см. 6.4.3) можно было бы ожидать, что при этом будет происходить своего рода векторное сумми­рование, ведущее к возникновению иллюзорного движения объекта в направлении левого нижнего угла поля зрения. Но в восприятии про­исходит нечто иное. Центральный объект кажется движущимся строго влево. Вместе с этим средняя рамка и движущийся в ней объект как це­лое смещаются вниз.