Интересны нейропсихологические данные о возможности поддержки и частичной реабилитации нарушенных моторных функций с помощью замены афферентации. Так, существенной компонентой локомоций является их ритмическая организация во времени. Соответствующие «во-
34 Можно предположить поэтому, что такие мануальные движения на самом деле планируются не в координатах тела (уровень В), а в координатах внешнего, эгоцентрически238 воспринимаемого пространства (уровень С, по Бернштейну).
L
дители ритма», возможно, локализованы или зависят от структур базаль-ных ганглиев. Бернштейн (1947) пытался помочь пациентам с сухоткой спинного мозга (tabes dorsalis), подменяя ритмическую временную организацию недоступной им в полном объеме проприоцептивной информации ритмической организацией видимого окружения в пространстве. Согласно его сообщениям, некоторые их этих пациентов могут испытывать серьезные трудности при движении по ровной, оптически гомогенной поверхности, но относительно легко поднимаются по лестнице (!) — именно потому, как полагает Бернштейн, что в последнем случае оптическая информация, структурированная видом ступенек, становится эффективным источником «зрительной кинестезии» (см. 3.1.2). Ритмическая структура видимого окружения, по-видимому, как-то «переносится» на последовательность двигательных актов.
Эти идеи не получили в свое время должного развития, но очень похожие феномены были описаны недавно для пациентов с болезнью Пар-кинсона. В связи с этим для улучшения ходьбы пациентов предлагается использовать монтирующиеся на очковой оправе устройства расширенной реальности (augmented reality — см. 3.3.2), позволяющие оптически совмещать образ окружения с координатной сеткой или соответствующими пространственно организованными стимулами (Riess, 1998).
В последнее время появились работы, направленные на компенсацию нарушений локомоций за счет привлечения механизмов социальной имитации. Японский исследователь Кори Мияке (Miyaké, личное сообщение, октябрь 2003) в поведенческих опытах установил, что два идущих рядом человека обычно начинают постепенно согласовывать ритм своих движений (см. также более раннюю публикацию этой группы исследователей — Miyaké, Miyagawa & Tamura, 2001). Чтобы использовать этот эффект для коррекции нарушений, Мияке разработал программную систему (виртуального робота — см. 9.2.3) под названием «Walkmate» — «идущий приятель». Система анализирует ритм и другие особенности походки пациента и вычисляет оптимальную стратегию ее трансформации в относительно стабильную и симметричную (в смысле движений левой и правой ноги) динамическую структуру. Эти промежуточные ритмические «решения» предъявляются затем пациенту в форме акустических сигналов через наушники. Первые сообщения говорят о выраженном стабилизирующем походку эффекте использования подобного электронного спарринг-партнера, в частности, у пациентов с болезнью Пар-кинсона. Конечно, и эти результаты еще должны получить независимую оценку с точки зрения надежности наблюдаемых эффектов.
Возвращаясь к общему вопросу о связи восприятия и моторики, мы хотели бы теперь рассмотреть некоторые новые данные, свидетельствующие о возможности совершенно неожиданного ответа на этот вопрос. Речь идет о группе экспериментов, в которых впервые была предпринята попытка сравнить параметры восприятия объектов, как они отражаются в нашем сознании, с тем, как они реконструируются по косвенным поведенческим признакам выполняемых нами двигательных актов (Milner & Goodale, 1995). Так, в целом ряде исследований последних лет
239
240
изучались особенности движений схватывания элементов конфигураций типа упоминавшейся выше фигуры Мюллера-Лайера (см. 2.3.2). При рассматривании этой фигуры (и других конфигураций, вызывающих так называемые оптико-геометрические иллюзии) возникает отчетливое восприятие различия физически равных элементов. Можно было бы ожидать, что это иллюзорное восприятие будет определять и особенности сенсомоторной активности. Видеорегистрация схватывания центральных отрезков фигуры Мюллера-Лайера показала, однако, что расстояние между пальцами приближающейся к фигуре кисти не зависит от иллюзорной оценки и оказывается одинаковым. В одно и то же время наше зрительное восприятие информирует сознание о различии отрезков, а моторику — об их идентичности!
Аналогичная диссоциация была обнаружена в работах американского психолога Дэниса Проффитта и его коллег (например, Creem & Proffitt, 1999). Проффитт исследовал субъективные оценки крутизны склона холмов (в изобилии встречающихся на юге штата Вирджиния, где он работает). Обычно, пытаясь «на глаз» определить угол наклона поверхности холма, мы переоцениваем его как минимум в 1,5—2 раза. Эта тенденция дополнительно усиливается, когда оценки делаются в состоянии выраженного утомления, например, сразу после многокилометрового забега. Проффитт показал, что можно получить значительно более адекватные оценки, причем совершенно не зависящие от субъективного состояния, если попросить испытуемых «на глаз» (но без зрительного контроля самих движений) установить рукой или ногой подвижную платформу в положение, примерно равное по наклону поверхности холма.
Наиболее неожиданный результат этих замечательных своей простотой экспериментов состоял в том, что адекватность и стабильность сенсомоторных оценок сохранялась лишь до тех пор, пока испытуемые непосредственно смотрели на холм. Достаточно было попросить их-повернуться к холму спиной или на 5—10 секунд закрыть глаза, как и эти оценки начинали приобретать привычные утрированные формы. Таким образом, «восприятие для действия», по-видимому, не имеет собственной памяти и в случае прерываний вынуждено опираться на данные имеющего доступ к памяти «восприятия для познания». Параметры восприятия, выявляемые при выполнении действий, тем самым, скорее соответствуют представлениям Гибсона и его последователей о прямом, не опосредованном знаниями и мышлением характере перцептивного отражения, тогда как более созерцательное «восприятие для познания» — с его зависимостью от фокального внимания, памяти и субъективных состояний сознания — лучше интерпретируется в рамках представлений о перцептивном образе как внутреннем когнитивном конструкте (см. 9.3.3).
3.4.2 Уровни восприятия
В этой главе нами уже упоминалось множество разновидностей сенсорно-перцептивных процессов, начиная с различных модальностей и субмодальностей. Некоторые из использовавшихся различений имели характер частично коррелирующих между собой дихотомических классификаций большей или меньшей степени общности. По сегодняшний день в этих данных остается много неясных деталей, причем даже в знаниях об анатомической организации, казалось бы, вдоль и поперек изученной зрительной системы человека. Одним из наиболее удачных, на наш взгляд, является различение амбьентной и фокальной обработки (см. 3.4.1). Это различение близко другим попыткам выделения двух уровней восприятия, таким как этапы локализации и идентификации, и несколько более специфично, чем классическое описание предвнима-тельной и внимательной фаз обработки, например, в «Когнитивной психологии» Найссера (см. 2.2.2). Оно может быть использовано для описания не только зрительного, но и как минимум слухового восприятия (Scott, 2005).
Остановимся на этих понятиях и стоящих за ними процессах подробнее. Под «амбьентной обработкой» понимаются процессы глобальной ориентации в пространстве и локализации объектов. По-видимому, такой характер имеет вся субкортикальная зрительная обработка, так как ограниченное количество нейронов не позволяет решать более сложную задачу идентификации объектов. Эти данные подтверждают предположение Бернштейна о том, что примитивные формы восприятия пространственного окружения связаны с субкортикальными структурами, в частности, базааьными ганглиями (стриатумом). Но перцептивная переработка пространственной информации существенна и для коры, где в этом отношении главным «специалистом» являются заднетеменные структуры (или так называемый «дорзальный поток» — см. 3.4.1 ). Эти же структуры вместе с премоторными отделами коры участвуют в реализации того, что было названо выше восприятием для действия35.
Как мы только что видели, у восприятия, непосредственно включенного в действие, возможно, нет памяти в привычном смысле слова — оно функционирует в режиме «здесь и теперь»36. Иными словами, хотя
35Кроме того, накапливаются данные, что именно эти теменные структуры преиму