элементов положительного множества. На другом принимается решение о характере ответа. Поскольку это разные стадии, то поиск в памяти оказывается исчерпывающим, то есть продолжающимся без принятия решения об ответе до полного перебора всех элементов положительного множества, причем не только в отрицательных, но и в положительных пробах (см. 4.2.3). Теоретически возможна и интуитивно более понятна стратегия самооканчивающегося поиска — прерывание поиска и ответ сразу после нахождения совпадающего элемента. В этом случае прямые для отрицательных ответов должны были бы быть в два раза более крутыми, чем прямые для положительных ответов, так как здесь пришлось бы в среднем просматривать лишь половину репрезентаций элементов положительного множества (рис. 5.1В). Подобная непараллельность зависимостей означала бы взаимодействие факторов или, при содержа -
357
тельной интерпретации, локализацию операций поиска и принятия решения на одной и той же стадии переработки информации.
Несмотря на свою простоту, данный подход оказался полезным средством анализа познавательных процессов при узнавании, давшим толчок для беспримерного в истории психологического экспериментирования потока исследований. В частности, самим Солом Стернбергом (см., например, Sternberg, 1999) было установлено существование еще ряда факторов, влияние которых на время реакции узнавания ограничивалось главными эффектами. Такими аддитивными факторами были, например, читабельность стимулов (процессы перцептивного кодирования) и относительная вероятность проб различного типа (процессы моторного ответа). В окончательном варианте модель включала 4 этапа переработки информации:
1) перцептивное кодирование,
2) последовательный поиск в памяти,
3) принятие решения,
4) организация моторного ответа.
Каждому из этих этапов соответствовала своя группа аддитивных факторов, наиболее важным из которых была нагрузка на память — величина положительного множества (этап последовательного поиска).
Особый интерес представляет возможность связать данные о временных характеристиках поиска в памяти с объемом непосредственного запоминания. Сравнив результаты примерно 50 работ, в которых исследовались узнавание и воспроизведение цифр, цветов, букв, слов, геометрических фигур, случайных форм и бессмысленных слогов, П. Каванах (Cavanagh, 1972) установил соотношение, показанное на рис. 5.2. Оказалось, что средняя скорость сканирования в памяти является линейно возрастающей функцией от величины, обратной среднему объему непосредственной памяти. Данная зависимость получила следующую интерпретацию. Предположим, что кратковременная память имеет фиксированный объем и может хранить лишь ограниченное число признаков материала. Чем больше признаков необходимо для его спецификации (в этом смысле слова, наверное, можно считать более сложными, чем буквы), тем меньшее число единиц могло бы разместиться в памяти. В то же время если поиск в памяти при еще более дробном анализе оказывается процессом последовательного просмотра признаков репрезентации каждого элемента, то в случае материала, имеющего большую размерность признаков, поиск в целом будет медленнее. Одна и та же формальная характеристика — ограниченность объема кратковременной памяти в отношении числа последовательно сканируемых признаков — объясняет две довольно различные группы феноменов7.
7 Возможно, найденное соответствие не является причинно-следственной связью. Дело в том, что объем непосредственного запоминания частично связан с повторением материала про себя (см. 5.2.3). Нет оснований утверждать, что аналогичные процессы «внутренней речи» (в силу их относительно низкой скорости) вовлечены в решение задачи по-358 иска в памяти.Величина, обратная объему непосредственной памяти
Рис. 5.2. Зависимость между величиной, обратной объему непосредственной памяти, и скоростью поиска в памяти (по: Cavanagh, 1972).
Одним из направлений этих исследований были попытки выйти за пределы ограниченного объема непосредственного запоминания. Что произойдет, если величина положительного множества выйдет за пределы «магического числа» Джорджа Миллера, то есть 7±2 единиц материала? Эксперименты показали, что в этом случае в области 6—8 элементов наблюдается надлом зависимостей времени реакции, так что кратковременному сегменту соответствуют более крутые, а долговременному — более пологие зависимости, свидетельствующие об относительно быстром поиске среди репрезентаций положительного множества. Хотя поиск в памяти осуществлялся быстрее, общее время реакции узнавания было более продолжительным. Этот последний факт говорит о переносе основной нагрузки со стадии поиска в памяти на стадии перцептивного кодирования и принятия решения либо даже об изменении микроструктуры процессов узнавания.
После рассмотрения в более широком диапазоне условий, исходная модель поиска в памяти потребовала дополнительных модификаций.
359
Например, оказалось, что при семантической группировке словесного материала (категории, впрочем, должны быть явно выделены) наклон функций времени реакции уменьшается, а положение точки пересечения с осью Y остается неизменным. Это означает либо увеличение скорости поиска, либо то, что он становится более селективным. Так как при введении двух категорий наклон уменьшается примерно на 25%, можно предположить, что имеет место частичная селективность: сначала в случайном порядке выбирается одна из двух категорий, а затем осуществляется исчерпывающий последовательный поиск, который прекращается после просмотра релевантной категории и продолжается, если была выбрана иррелевантная категория. Далее, в некоторых случаях оказалось, что отрицательные и положительные зависимости непараллельны, причем отношение их наклонов меньше, чем 2:1, как это должно быть при самооканчивающемся поиске. Эти результаты, в свою очередь, можно объяснить наличием испытуемых, использующих стратегию самооканчивающегося поиска. Эта, казалось бы, более эффективная стратегия ведет на самом деле к общему замедлению ответов8.
В прикладных исследованиях известного русского психолога А.Б. Леоновой (Leonova, 1998), использовавшей задачу поиска в памяти Стернберга в качестве теста на утомление, было обнаружено, что если в начале рабочего дня сборщицы электронных микросхем демонстрируют классическую картину исчерпывающего поиска, то к концу смены они переходят на самооканчивающийся режим поиска (с отношением наклонов 2:1), сопровождающийся заметным замедлением ответов. Это означает, что под влиянием утомления поиск в памяти и принятие решения о характере ответа перестают вносить аддитивный вклад во время ответа. Если при нормальном функциональном состоянии эти операции «разнесены» по разным этапам и принятие решения о характере ответа осуществляется только один раз, в самом конце обработки, то при утомлении эти процессы начинают осуществляться на одном и том же этапе — принятие решения (продолжать поиск или дать положительный ответ) осуществляется в связи с каждым элементарным актом проверки репрезентаций положительного множества. В результате узнавание начинает требовать постоянного сознательного контроля и функционирование памяти деавтоматизируется (см. 4.3.3 и 5.4.2).
Таким образом, попытки распространить частную модель поиска на основной фактический материал психологии памяти привели к постановке множества интересных вопросов, но пока не позволили интег-
8 Некоторые другие данные также требуют либерализации исходной модели Стернберга. Так, она не объясняет возникновение позиционных эффектов — ускорения времени реакции при совпадении тестового стимула с первыми или последними элементами положительного множества Если поиск исчерпывающий, то не вполне понятно также обнаруженное в ряде работ ускорение ответа на стимулы, дважды встречающиеся в тесто-360 вой последовательности или более часто предъявляемые в эксперименте.рировать имеющиеся данные в рамках более общей теории (см. 5.2.1). Метод аддитивных факторов Стернберга сохраняет свое значение прежде всего как эвристический прием, используемый для описания микроструктуры сложных когнитивных процессов (Sternberg, 1999). Он, в частности, представляет интерес для работ по функциональному картированию мозга, где до сих пор преимущественно используется дон-деровская методика вычитания (Sternberg, 2004). Поскольку временная шкала имеет абсолютный характер и не допускает произвольных трансформаций, которые возможны в случае разнообразных шкал точности (например, шкалы вероятности правильных ответов), хронометрические данные широко используются и за пределами данной области, например, при анализе автоматических и сознательно управляемых компонентов обработки (см. 4.3.2), организации семантической памяти (6.2.1) и процессов понимания (7.3.1).
5.1.3 Непрямые методы: имплицитная память
Одним из наиболее важных современных направлений изучения памяти является анализ так называемого имплицитного запоминания. Речь идет о непрямой оценке влияния прошлого опыта на успешность тех или иных действий и операций. При этом применяются процедуры тестирования, которые не осознаются или, по крайней мере, не должны осознаваться испытуемыми как связанные с запоминанием мнестические задачи. Иными словами, имплицитное запоминание отличается от традиционного, или эксплицитного запоминания, тем, что его проявления не являются результатом выполнения задач типа узнавания и воспроизведения, прямо сформулированных как тесты на запоминание. Популярность этого рода исследований в последние 10—20 лет объясняется не только большой распространенностью эффектов имплицитной памяти, или «рййлшнг-эффектов9, но и рядом их неожиданных особенностей. Складывается впечатление, что для возникновения имплицитных эффектов иногда несущественны характер работы с материалом и даже само присутствие памяти в традиционном смысле слова.