Основным способом защиты населения следует считать изоляцию людей от внешнего воздействия радиоактивных излучений, а также исключение условий, при которых возможно попадание радиоактивных веществ внутрь организма человека вместе с воздухом и пищей.
Наиболее целесообразный способ защиты от радиоактивных веществ и их излучений — убежища и противорадиационные укрытия, которые надежно защищают от радиоактивной пыли и обеспечивают ослабление гамма-излучения радиоактивного заражения в сотни — тысячи раз. Стены и перекрытия промышленных и жилых зданий, особенно подвальных и цокольных помещений, также ослабляет действие гамма-лучей. Коэффициент защиты стен зданий и сооружений рассчитывается, как и от гамма-излучения проникающей радиации, но формуле (11). Толщины слоев половинного ослабления по гамма-излучению радиоактивного заражения приведены в табл. 22 или могут быть вычислены по плотности материала: с?пол= =13/р, где 13 см—слой воды, ослабляющий гамма-лучи радиоактивного заражения в два раза.
Для защиты людей от попадания радиоактивных веществ в органы дыхания и на кожу при работе в условиях радиоактивного заражения применяют средства индивидуальной защиты. При выходе из зоны радиоактивного заражения необходимо пройти санитарную Обработку, т. е. удалить РВ, попавшие на кожу, и провести дезактивацию одежды.
Таким образом, радиоактивное заражение местности, хотя и представляет чрезвычайно большую опасность для людей, но если своевременно принять меры по защите, то можно полностью обеспечить безопасность людей и их постоянную работоспособность. В этих целях мероприятия по гражданской обороне в условиях радиоактивного заражения местности проводят при постоянном контроле за облучением всех работающих, который организует штаб гражданской обороны и служба противорадиационной и противохимической защиты ГО объекта.
12. Электромагнитный импульс ядерного взрывах, физическая сущность, поражающее действие, способ защиты.
Электромагнитный импульс. При взаимодействии мгновенного и захватного гамма-излучений с атомами и молекулами среды последним сообщаются импульсы энергии. Основная часть энергии "расходуется на сообщение поступательного движения электронам - и ионам, образовавшимся в результате ионизации. Первичные (быстрые) электроны движутся в радиальном направлении от центра взрыва и образуют радиальные электрические токи и поля, быстро нарастающие по времени. Обладая большой энергией, первичные электроны производят дальнейшую ионизацию, которая также приводит к образованию полей и токов. Возникающие кратковременные электрические и магнитные поля и представляют собой электромагнитный импульс ядерного взрыва (ЭМИ),
ЭМИ наземного ядерного взрыва характеризуется амплитудой напряженности поля и формой импульса изменения поля с течением времени. Форма импульса показана на рис. 11, где на оси ординат дано отношение напряженности электрического поля для определенного времени после взрыва к максимальному импульсу, на оси абсцисс — время, прошедшее после взрыва. Это одиночный однополярный импульс с очень крутым передним фронтом, длительность которого определяется длительностью мгновенного гамма импульса и составляет несколько сотых долей микросекунды, и спадающий подобно импульсу от молниевого разряда по экспоненциальному закону в течение нескольких десятков миллисекунд. Диапазон частот ЭМИ до 100 Мгц, но в основном его энергия распределена около средней частоты (10—15 кгц).
Поскольку амплитуда ЭМИ быстро уменьшается с увеличением расстояния, его поражающее действие — несколько километров от центра (эпицентра) взрыва крупного калибра. Так, при наземном взрыве мощностью 1 Мт вертикальная составляющая электрического поля ЭМИ на расстоянии 4 км — 3 кВ/м, на расстоянии 3 км — 6 кВ/м и 2 км — 13 кВ/м.
ЭМИ непосредственного действия на человека не оказывает. Приемники энергии ЭМИ — проводящие электрический ток тела:
все воздушные и подземные линии связи, линии управления, сигнализации, электропередачи, металлические мачты и опоры, воздушные и подземные антенные устройства, наземные и подземные трубопроводы, металлические крыши и другие конструкции, изготовленные из металла. В момент взрыва в них На доли секунды возникает импульс электрического тока и появляется разность потенциала относительно земли. Под действием этих напряжений может происходить: пробой изоляции кабелей, повреждение входных элементов аппаратуры, подключенной к антеннам, воздушным и подземным линиям (пробой трансформаторов связи, выход из строя разрядников, предохранителей, порча полупроводниковых приборов и т. д.), а также выгорание плавких вставок, включенных в линии для защиты аппаратуры. Высокие электрические потенциалы относительно земли, возникающие на экранах, жилах кабелей, антенно-фидерных линиях и проводных линиях связи могут представлять опасность для лиц, обслуживающих аппаратуру.
Наибольшую опасность ЭМИ представляет для аппаратуры необорудованной специальной защитой, даже если она находится в особо прочных сооружениях, способных выдерживать большие механические нагрузки от действия ударной волны ядерного взрыва. ЭМИ для такой аппаратуры является главным поражающим фактором.
Линии электропередач и их оборудование, рассчитанные на напряжение десятков — сотен киловольт, являются устойчивыми к воздействию электромагнитного импульса.
Необходимо также учитывать одновременность воздействия импульса мгновенного гамма-излучения и ЭМИ: под действием первого — увеличивается проводимость материалов, а под действием второго — наводятся дополнительные электрические токи. Кроме того, следует учитывать их одновременное воздействие на все системы, находящиеся в районе взрыва.
На кабельных и воздушных линиях, попавших в зону мощных импульсов электромагнитного излучения, возникают (наводятся) высокие электрические напряжения. Наведенное напряжение может вызывать повреждения входных цепей аппаратуры на довольно удаленных участках этих линий.
В зависимости от характера воздействия ЭМИ на линии связи и подключенную к ним аппаратуру могут быть рекомендованы следующие способы защиты:
применение двухпроводных симметричных линий связи, хорошо изолированных между собой и от земли; исключение применения однопроводных наружных линий связи; экранирование подземных кабелей медной, алюминиевой, свинцовой оболочкой; электромагнитное экранирование блоков и узлов аппаратуры; использование различного рода защитных входных устройств и грозозащитных средств.
13. Понятие химического оружия, отравляющие вещества, токсичность. Сравнительная характеристика отравляющих веществ по токсичности. Понятие токсическая доза.
Основа химического оружия — отравляющие вещества (0В), представляющие собой ядовитые (токсичные) соединения, применяемые для снаряжения химических боеприпасов. Они предназначаются для поражения незащищенных людей, животных и способны заражать воздух, продовольствие, корма, воду, местность и предметы, расположенные на ней.
Основные пути проникновения 0В: через дыхательный аппарат (ингаляция), кожные покровы, желудочно-кишечный тракт и кровяной поток при ранениях зараженными осколками или специальными поражающими элементами химических боеприпасов. Критерии боевой эффективности 0В: токсичность, быстродействие (время от момента контакта с 0В до проявления эффекта), стойкость.
Токсичность отравляющих веществ — это способность 0В вызывать поражения при попадании в организм в определенных дозах. В качестве количественной характеристики поражающего действия 0В и других токсичных для человека и животных соединений используют понятие токсическая доза. При ингаляции ток-содоза равна произведению концентрации 0В в воздухе на время воздействия в минутах (мг-мин/л); при проникновении 0В через кожу, желудочно-кишечный тракт и кровяной поток токсодоза измеряется количеством 0В на килограмм живой массы (мг/кг).
Внезапность является непременным условием применения химического оружия. По мнению зарубежных специалистов, летательные дозы 0В должны поступить в организм человека в течение нескольких секунд, т. е. до применения им средств индивидуальной защиты органов дыхания и кожи. В зависимости от дозы 0В поражение может развиваться в виде молниеносной формы с летальным исходом в течение первых секунд или минут или в форме тяжелого прогрессирующего паталогического процесса.
Стойкость — это способность 0В сохранять свои поражающие » действия в воздухе или на местности в течение определенного периода времени. В боевых состояниях (пар, аэрозоль, капли) 0В способны распространяться по ветру на большие расстояния, проникать в боевую технику, различные укрытия и длительное время сохранять свои поражающие свойства. На переход в боевое состояние 0В и действие их в атмосфере и на местности оказывают влияние физико-химические характеристики: летучесть, вязкость, поверхностное натяжение, температура плавления и кипения, устойчивость к факторам внешней среды. Современные 0В условно делятся: по характеру поражающего действия — нервно-паралитические, общеядовитые, удушающие, кожно-нарывные, раздражающие и психогенные; в зависимости от температуры кипения и летучести — стойкие и нестойкие.
14. Классификация отравляющих веществ: токсическая, тактическая, по стойкости. Признаки поражения, индикация, дегазация, меры первой помощи при поражении отравляющими веществами.
Поражение отравляющими веществами. Характер и степень поражения людей и животных зависят от вида 0В (СДЯВ) и токсической дозы.
Отравляющие вещества нервно-паралитического действия—группа летальных 0В, представляющих собой высокотоксичные фосфорсодержащие 0В (зарин, зоман, Ви-Икс). Зарин — бесцветная прозрачная жидкость со слабым фруктовым запахом, плотность 1,09 г/см3, температура кипения 147 °С, температура затвердения от —30 до —50 °С, хорошо растворяется в воде. Зоман — бесцветная жидкость со слабым запахом камфоры, плотность 1,01 г/см3, температура кипения 185—187°С, температура затвердения от —30 до —80 °С, в воде растворяется плохо. Ви-Икс—бесцветная жидкость, без запаха, плотность 1,07 г/см3;