Смекни!
smekni.com

Воздействие лазерного излучения (стр. 1 из 3)

Введение

Использование лазерных приборов связано с определенной опасностью для человека. В данной работе будут рассмотрены только особенности конструирования и практического применения лазерных приборов, связанные с возможностью поражения глаз и кожных покровов человека. При этом основополагающими норматив­ными документами являются: 825-я публикация Международной тех­нической комиссии (МЭК) под названием "Радиационная безопас­ность лазерных изделий, классификация оборудования, требования и руководство для потребителей" как наиболее компетентная реко­мендация мирового класса; новейшая отечественная разработка СНиП; ГОСТы.

1. Физиологические эффекты при воздействии лазерного излучения на человека

Непосредственно на человека оказывает лазерное излучение любой длины волны; однако в связи со спектральными особенностя­ми поражения органов и существенно различными предельно до­пустимыми дозами облучения обычно различают воздействие на гла­за и кожные покровы человека.

1.1 Воздействие лазерного излучения на органы зрения

Основное вредное воздействие лазерное излучение оказывает на сетчатку глаза, причем хрусталик (и глазное яблоко), действуя как дополнительная фокусирующая оптика, существенно повышает концентрацию энергии на сетчатке.

Диапазон длин волн вредного воздействия на сетчатку глаза от 0.4 до 1.4 мкм.

1.1.1 МДУ прямого облучения сетчатки

Основное воздействие при импульсном воздействии оказывает тепловое разрушение сетчатке, при длительном воздействии излу­чения на сетчатку глаза приводит в основном к фотохимическим процессам ее разрушения.

Нормы плотности энергии для импульсного воздействия на сетчатку глаза [Дж/м^2]:

dt[мс] \ &[мкм] 0.4-0.7 1.05-1.4

< 2E-5 5E-3

2E-5..5E-5 5E-2

> 2E-5 18*dt^0.75

> 5E-5 90*dt^0.75

При наличии последовательности импульсов не только ни один из них, но и усредненная облученность не должны превышать МДУ. При усреднении воздействия последовательности импульсов с дли­тельностью dt<10 мкс и частотой повторения f>1 Гц МДУ одиночно­го импульса должен быть уменьшен в C5 раз:

C5= 1/sqrt(f) при 1<f<278 Гц. C5=0.06 при f>278 Гц.

Если длительность отдельных импульсов dt в последовательности превышает 10 мкс, то для длительностью Ndt за ограничение облу­ченности принимают 1/N часть МДУ

В сериях до 10-ти импульсов принимают длительность импуль­са равным длительности серии и счетают как в предыдущем пункте.

1.1.2 МДУ для наружных покровов глаз человека.

Невидимое УФ-(0.2..0.4мкм) или ИК-излучение (1.4..1000мкм) практически не доходят до сетчатки и поэтому может повреждать лишь наружные части глаза человека

1.1.3 Представление МДУ облучения как поверхности в координатах - t

В 825-й публикации МЭК определены МДУ облучения роговой оболочки глаза человека прямым (т.е. направленным) лазерным из­лучением.

1.1.4 МДУ облучения глаз рассеянным лазерным излучением.

На практике наиболее вероятно рассеянное лазерное излуче­ние. В этом случае очень важно при определении МДУ облучения перенормировать плотность излучения в диапазоне 0.4< <1.4 мкм. Достигающего сетчатки, поражая ее. Эта перенормировка связана с тем, что характер и размер поражения сетчатки изменяются в свя­зи с резким увеличением зоны облучения - от 0.01 мм., т.е. уг­ловой размер составляет 1' до a=0.015...0.24 рад.

1.2 МДУ лазерного облучения кожных покровов

МДУ лазерного облучения для кожных покровов человека опре­деляется по рекомендациям МЭК, и они несколько отличаются от значений, рассмотренных ранее для глаз в области видимого и ближнего ИК-излучения ( <1.4 мкм.)

Для определения МДУ для глаз и для кожных покровов пользу­ются таблицами, созданными по рекомендации МЭК.

2. Требования к изготовителям лазерных приборов в связи с обеспечением безопасности пользователей

МЭК рекомендует в связи с унификацией требований к конс­трукциям лазерных приборов разделять эти приборы на четыре класса с точки зрения опасности лазерного излучения для пользо­вателей.

2.1 Лазерные излучатели класса 1

Наиболее безопасными как по своей природе, так и по конс­труктивному исполнению являются приборы класса 1. Допустимые пределы излучения (ДПИ) лазерных приборов класса 1 в спектраль­ной области от 0.4 до 1.4 мкм, приведены в таблице

3. Технико-гигиеническая оценка лазерных изделий в России.

В систему документов, устанавливающих единую систему обес­печения лазерной безопасности, входят: технические средства снижения опасных и вредных производственных факторов, организа­ционные мероприятия, контроль условий труда на лазерных уста­новках.

К опасным и вредным производственным факторам относятся:

- лазерное излучение (прямое рассеянное, прямое, отраженное);

- световое излучение (УФ, видимое, ИК) от источников накачки или кварцевых газоразрядных трубок, а также от плазменных фа­келов и материалов мишени;

- шум и вибрации;

- ионизирующие и рентгеновское излучение (при анодом напряжении более 5 КВ);

- продукты взаимодествия ЛИ и мишеней;

- высокое напряжение в цепях питания;

- ВЧ- и СВЧ-поля от генераторов накачки;

- нагретые поверхности;

- токсичные и агрессивные вещества, используемые в конструкции лазера;

- опасность взрывов и пожаров.

Все факторы нормируются соответствующими ГОСТами.

3.1. Классы опасности лазерного излучения по СНиП 5804-91.

Наиболее опасно лазерное излучение с длинной волны: 0.38 -

1.40 мкм. - для сетчатки глаза; 0.18 - 0.38 мкм. и свыше 1.40 мкм. - для передних сред глаза; 0.18 - 100 мкм. (т.е. во всем диапазоне) - для кожи.

При конструировании лазерных установок руководствуются принцыпом исключения воздействия ЛИ на человека.

По степени опасности ЛИ делится на 4 класса:

1 класс - полностью безопасное ЛИ;

2 класс - ЛИ представляет опасность для кожи и глаз при облуче­нии коллимированным пучком, но безопасно при диффузном об­лучении;

3 класс - ЛИ видимого диапазона опасно для глаз (коллимирован­ное и диффузное излучение на расстоянии менее 10 см. от от­ражающей поверхности) и кожи (коллимированный пучок);

4 класс - диффузно отраженное ЛИ опасно для кожи и глаз на расстоянии менее 10 см.

3.2. Гигиеническое нормирование ЛИ.

Для кождого режима работы лазера и спектрального диапазона рекомендуются соответствующие предельно допустимые уровни (ПДУ) для энергии (W) и мощности (P) излучения, прошедшего ограничи­вающую апертуру d = 7 мм. для видимого диапазона или d = 1.1 мм. для остальных, энергетической экспозиции (H) и облученности (E), усредненных по ограничивающей апертуре:

H = W / Sa , E = P / Sa ,

где Sa - ограничивающая апертура.

Хронические ПДУ в 5 - 10 раз ниже ПДУ однократного воздейс­твия.При одновременном воздействии ЛИ разного диапазона их действие суммируется с умножением на соответствующий энер­го-вклад.

Лазерное излучение характеризуется некоторыми особеннос­тями :

1 - широкий спектральный (&=0.2..1 мкм) и динамический (120..200 дБ);

2 - малая длительность импульсов (до 0.1 нс);

3 - высокая плотность мощности (до 1e+9 Вт/см^2) энергии;

1. Измерение энергетических параметров и характеристик лазерного излучения

1.1 Измерение мощности и энергии лазерного излучения.

Энергия[Дж] - энергия,переносимая лазерным излучением - W Мощность [Вт] - энергия, переносимая лазерным излучением

в единицу времени - P

Средства измерения содержат :

1) ПИП - приемник (первичный) измерительный преобразова­тель

2) Измерительное устройство

3) Регулирующее или отсчетное устройство

В ПИП энергия преобразуется в тепловую или механическую или в электрический сигнал

ПИП делятся на два типа : поглощающего и проходного

В ПИП поглощающего типа, поступая на вход энергия лазер­ного излучения почти полностью поглощается и рассеивается в нем.

В ПИП проходящего типа рассеивается лишь поступившей на вход энергии излучения, а большая часть излучения проходит че­рез преобразователь и может быть использована для требуемых целей.

Измерительное устройство включает преобразовательные эле­менты и измерительную цепь. Их назначение - преобразование вы­хходного сигнала ПИП в сигнал, подаваемый на отсчетное уст­ройство.

Отсчетное или регистрирующее устройство служит для считы­вания или регистрации значения измеряемой величины.

1.1.1 Тепловой метод

Сущность метода состоит в том, что энергия излучения при взаимодействии с веществом ПИП превращается в тепловую энер­гию, которая впоследствии измеряется.

Для измерения тепловой энергии, выделяющейся в ПИП, обыч­но используют:

-термоэлектрический эффект Зеебека (возникновение тепло­вой ЭДС между нагретыми и холодными спаяными проводниками из двух разных металлов или проводников );

-боллометрический эффект (явлении изменения сопротивления металла или полупроводника при изменении температуры);

-фазовые переходы "твердое тело-жидкость" (лед-вода);

-эффект линейного или обьемного расширения веществ при нагревании ;

Необходимо отметить, что все тепловые ПИП в принципе яв­ляются калориметрами .

К достоинствам калориферов относятся :

-широкий спектральный и динамический диапазон работы;

-высокая линейность ,точность ,стабильность характеристик;

-простота конструкции ;

Тепловой поток : Ф=Gt (Tk -To ), где Gt - тепловая прово­димость; Rt/1=1/Gt - тепловое сопротивление.

Уравнение теплового равновесия имеет вид: dT(t) T(t)

P(t)=C*----- + ---- , где P(t) - мощность, рассеиваемая в dT Rt

калориметре; C - теплоемкость;

T=Tk-To

Если в ПИП чувствительным элементом является термометри­ческое сопротивление, которое непосредственно воспринимает оп­тическое излучение и в нем присутствует приемный элемент, то такой ПИП называется болометром.

Принцип работы пироэлектрических ПИП основан на использо­вании пироэлектрического эффекта, наблюдаемого у ряда нецент­росимметричных кристаллов при их облучении и проявляющегося в возникновении зарядов на гранях кристалла перпендикулярных особенной полярной оси. Если изготовить небольшой конденсатор и между его обкладками поместить пироэлектрик, то изменения температуры, обусловленное поглощением излучения, будут прояв­ляться в виде изменения заряда этого конденсатора и могут быть зарегестрированы.