Смекни!
smekni.com

Разрушения зданий при аварийных взрывах бытового газа (стр. 3 из 3)

Наличие постоянной (даже незначительной) вентиляции существенно повышает уровень взрывобезопасности, т.к. резко снижает способность формирования взрывоопасных облаков в жилых помещениях.

Ввиду того, что газопаровоздушные смеси способны к горению только при определенной концентрации горючей компоненты в воздухе, аварийные взрывы в жилых зданиях часто носят многостадийный характер. Кроме этого, учитывая, что скорость распространения пламени в газовоздушной смеси существенно зависит от концентрации, взрывные хлопки могут следовать один за другим, т.е. разнесены во времени на несколько секунд. Поэтому свидетели аварий могут слышать один или несколько хлопков. Исключения составляют аварийные взрывы, связанные с разрушением баллонов в условиях пожара. В этом случае время, необходимое на разогрев и разрыв баллона, составляет десятки минут.

К особенностям дефлаграционных взрывов внутри помещений следует отнести формирование мощных воздушных потоков в межквартирных и межкомнатных проходах, коридорах и т.д. Именно эти потоки (а не ударные волны, как это часто трактуется, особенно в прессе) приводят к выбросу фрагментов строительных конструкций и предметов из аварийной квартиры.

Данное повреждение конструкции мог нанести только скоростной напор струи, истекающей из квартиры. При этом следует иметь в виду, что разрушение конструкций происходит под действием избыточного давления, а последующий их выброс происходит под действием скоростного напора.

Резюмируя сказанное, можно утверждать, что для реализации значительных разрушений жилых зданий вполне достаточно иметь незначительный объем газа во взрывоопасном состоянии. При этом уровни взрывных нагрузок существенно зависят от множества факторов: объемно-планировочного решения помещения, сценария протекания аварийного взрыва, характера остекления окон всей квартиры, состояния дверей в момент взрыва (открыты или закрыты межкомнатные двери), места инициирования смеси и т.д. Поэтому при рассмотрении последствий аварийных взрывов достаточно типичным является реализация значительных взрывных нагрузок и последующее разрушение здания при незначительном изменении сценария протекания аварии. Например, если в момент начального взрыва на кухне дверь в коридор квартиры закрыта, то реализуется «хлопок» и последующий незначительный пожар на кухне. Это связано с тем, что переобогащенная смесь при первом «хлопке» будет выдавлена в атмосферу через разрушенное остекление. Если же дверь на кухне в момент первого «хлопка» открыта, то смесь через дверной проем устремляется в соседние комнаты, турбулизируется и обогащается кислородом. В результате формируется хорошо подготовленное к горению взрывоопасное облако, которое через незначительный промежуток времени (через 10-15 секунд) взрывается, что приводит к вторичному взрыву, который причиняет основные разрушения зданию. Описанные сценарии достаточно типичны при аварийных взрывах. Отличие их протекания заключается только в закрытой или открытой кухонной двери, а уровни взрывных нагрузок отличаются в 10-15 раз. Таким образом, двухстадийный аварийный дефлаграционный взрыв в жилых помещениях явление достаточно типичное и обрушение строительных конструкций зданий в результате незначительных по объему утечек горючих веществ в помещения тоже достаточно распространенное явление.

Причиной формирования взрывоопасного облака послужила утечка пропана на кухне двухкомнатной квартиры (5-ый этаж). Там же от реле холодильника произошло и воспламенение смеси. Из рисунка видно, что наибольшим разрушениям подверглись жилые комнаты, сообщающиеся с кухней.

Аварийная ситуация, связанная с взрывным горением газовоздушной смеси в жилой квартире, произошла в г.Бийск (2000г.). В кирпичном доме произошел аварийный взрыв газовоздушной смеси. В результате взрыва произошло обрушение части дома (от первого этажа до третьего), имелись человеческие жертвы, нанесен значительный материальный ущерб (рис.12).

Обрушение кирпичных зданий в результате взрывных аварий достаточно распространенное явление в силу того, что кирпичная кладка, обладая высокой несущей способностью в вертикальном (эксплуатационном) направлении, практически не сопротивляется горизонтальным (взрывным) нагрузкам. Кроме этого, кирпичные стены, как правило, являются несущими конструкциями и при их прогибе (под действием взрывных нагрузок) происходит потеря их устойчивости, что приводит к обрушению всей конструкции.

Рассмотрим причины значительных разрушений жилых зданий при аварийных взрывах.

В настоящее время проектирование зданий с взрывоопасными технологиями осуществляется в соответствии с рекомендациями СНиП 2.09.02-85*) «Производственные здания», где требуется на каждые 1000м3 свободного объема помещения иметь не менее 50м2 освобождаемых сбросных проемов. При этом предполагается, что взрывные нагрузки не превысят 5кПа. Данный параметр определяет минимальную несущую способность промышленного здания, которая и закладывается в проект. Это в определенной степени гарантирует их безопасность при внутреннем взрыве.

При проектировании жилых зданий (в том числе и газифицированных) вопрос их взрывоустойчивости вообще не рассматривается, т.к. они не относятся к категории взрывоопасных объектов. При этом площадь оконных проемов, которые при аварийном взрыве выполняют роль сбросных отверстий, определяется из норм освещенности жилых помещений. А несущая способность зданий не проверяется на горизонтальные (взрывные) нагрузки. Вместе с этим аварийные взрывы в жилых домах происходят достаточно часто.

Назначение площади оконных проемов из норм освещенности жилых помещений обеспечивает уровень безопасных нагрузок в 5кПа, т.е. обеспечивает взрывоустойчивость здания, при условии, что оно проектируется как промышленное и взрывоопасное производство. Причем только при условии правильного выбора вида и характера предохранительных конструкций (остекления).

На практике происходит следующее. Либо несущая способность здания относительно горизонтальных нагрузок ниже безопасного уровня - 5кПа, либо параметры предохранительных конструкций не удовлетворяют требованиям взрывобезопасности. Например, для остекления необходимым условием, обеспечивающим взрывоустойчивость помещений, является его вскрытие при уровнях избыточного давления в помещении 1-2кПа. Для легкосбрасываемых конструкций существуют, кроме этого, ограничения на их инерционность.

Исходя из сказанного, существуют две основные причины значительных разрушений жилых зданий при аварийных взрывах.

Первая – малая несущая способность зданий относительно горизонтальных нагрузок. В первую очередь это относится к кирпичным зданиям. На рис.12, рис.13 были приведены примеры обрушения кирпичных зданий при аварийных взрывах.

Вторая причина – установка в помещениях с газовыми приборами усиленных вариантов остекления, что противоречит нормам взрывозащиты. Одной из причин значительных разрушений на Щербаковской улице явилось именно использование стеклопакетов, обладающих повышенными прочностными характеристиками (см. рис.14). Следовательно, использование стеклопакетов в помещениях, где возможна загазованность, представляет значительную опасность с точки зрения взрывоустойчивости. При аварийных взрывах окна, оборудованные таким остеклением, не выполняют роль сбросных проемов, что приводит к резкому повышению взрывного давления.

Панельные здания или здания каркасного типа обладают более высокой несущей способностью. Поэтому при аварийных взрывах возможен срыв стеновой плиты, но здание в целом сохраняет устойчивость (рис.11).

Кроме этого необходимо иметь в виду, что вероятность взрыва значительно возрастает при ухудшении качества вентиляции. На это указывает статистика взрывов, количество которых резко увеличивается в периоды межсезонья, когда отключается (или еще не включено) отопление. В эти периоды температура в квартирах близка к температуре окружающей среды (окна в квартирах при этом закрыты), поэтому качество естественной вентиляции достаточно плохое (вентиляция «опрокидывается»). Следствием этого является формирование взрывоопасной смеси даже при незначительной утечке газа. Поэтому профилактика вентиляционной системы жилых зданий является и профилактикой взрывобезопасности.

В заключение необходимо отметить, что обрушение межквартирных перегородок часто является причиной травмирования и гибели людей в квартирах, соседних с аварийной квартирой.

Выводы

Рассмотрены основные причины обрушения жилых газифицированных зданий при аварийных взрывах.

Показано, что основные причины значительных разрушений жилых зданий при аварийных взрывах две. Первая причина заключается в малой несущей способности зданий относительно горизонтальных нагрузок. В первую очередь это относится к кирпичным зданиям.

Вторая причина – установка в помещениях с газовыми приборами усиленных вариантов остекления.

Использование остекления с повышенными прочностными характеристиками в газифицированных домах не допустимо, т.к. при взрыве с большой вероятностью происходит обрушение здания.

Показано, что профилактика вентиляционной системы жилых зданий является и профилактикой взрывобезопасности.

Список литературы

Комаров А.А. Анализ последствий аварийного взрыва природного газа в жилом доме. Журнал «Пожаровзрывобезопасность». т.8, №4, 1999г. С.49-53.

Комаров А.А. Прогнозирование динамических нагрузок при аварийных взрывах в помещениях. Журнал «Механизация строительства», №6, 2000. С.21-26.

Комаров А.А., Шлег А.М. Роль предохранительных конструкций для обеспечения взрывоустойчивости объектов в нефтегазовом комплексе. Материалы конференции «Безопасность в нефтегазовом комплексе». Москва, 27 апреля 2000г. С.60-61.

Комаров А.А., Шлег А.М. Оптимальный выбор параметров предохранительных конструкций во взрывоопасных цехах для смягчения последствий аварийных взрывов. Материалы Всероссийского семинара «Оценка и прогнозирование социально-экономических последствий ЧС», Москва, 26 октября 2000г., ВНИИ ГОЧС.

Абросимов А.А., Комаров А.А. Мероприятия, обеспечивающие безопасные нагрузки при аварийных взрывах в зданиях со взрывоопасными технологиями. «Сейсмостойкое строительство. Безопасность сооружений», №4, 2002г. С.48-51.

Комаров А.А., Г.В.Чиликина Условия формирования взрывоопасных облаков в газифицированных жилых помещениях. Журнал «Пожаровзрывобезопасность», т.11, №4, 2002г. С.24-28.

Комаров А.А. Прогнозирование нагрузок от аварийных дефлаграционных взрывов и оценка последствий их воздействия на здания и сооружения. Докторская диссертация, М.: МГСУ, 2001.