Напряжение шага – напряжение шага между двумя точками цепи тока, находящимися на расстоянии шага, на которых одновременно стоит человек. Если человек находится на грунте вблизи заземлителя, с которого стекает ток, то часть этого тока может ответвляться и проходить через ноги человека по нижней петле. Ток, проходящий через человека, зависит от тока замыкания на землю: Ih=φ(Iз). во всех случаях, кроме двухфазного прикосновения, в цепи тока через человек участвует грунт, одна из точек касания находится на поверхности грунта, при этом ток через человека зависит от тока замыкания на землю. Чтобы выявить эту зависимость и определить ток через человека, надо провести анализ явлений прохождения тока в грунте.
4. Основные причины возникновения пожаров на предприятиях и средства пожарной профилактики
Наиболее частые причины возникновения пожаров на промышленных предприятиях – неосторожное обращение с огнем, неисправность производственного оборудования, нарушения технологического процесса, нарушения правил эксплуатации электрооборудования, несоблюдение мер пожарной безопасности при проведении электрогазосварочных работ и некоторых другие.
Пожар на производстве может возникнуть вследствие причин неэлектрического и электрического характера.
Причины неэлектрического характера:
- неправильное устройство и неисправность котельных печей, вентиляционных и отопительных систем, отопительных приборов и технологического оборудования;
- неисправность систем питания и смазки в работающих двигателях механизмов;
- нарушение технологического процесса;
- нарушение требований пожарной безопасности при газосварочных работах, резке металлов, пользовании паяльными лампами;
- халатное и неосторожное обращение с огнем – курение, оставление без присмотра нагревательных приборов, разогрев деталей и сушка;
- самовозгорание или самовоспламенение веществ.
Причины электрического характера:
- короткие замыкания, перегрузки, искрения от нарушения изоляции, что приводит к нагреванию проводников до температуры воспламенения изоляции;
- электрическая дуга, возникающая между контактами коммутационных аппаратов, не предназначенных для отключения больших токов нагрузки, а также придуговой электросварке;
- неудовлетворительные контакты в местах соединения проводов и их сильный нагрев вследствие большого переходного сопротивления при протекании электрического тока;
- аварии с маслонаполненными аппаратами, когда происходит сброс в атмосферу и воспламенение продуктов разложения минерального масла и смеси их с воздухом;
- искрение в электрических аппаратах и машинах, а также искрение в результате электростатических разрядов и ударов молнии;
- неисправность в обмотках электрических машин при отсутствии надлежащей защиты.
Рост единичной мощности агрегатов, интенсификация технологических процессов, т.е. увеличение объемов и скоростей движения подчас пожаро- и взрывоопасных материалов, применение высоких температур и давлений, максимальная механизация и автоматизация выдвигают повышенные требования к надежности и эффективности пожаро- и взрывозащиты. Как показывает практика, авария даже одного крупного агрегата, сопровождается пожаром и взрывом, а в химической промышленности они часто сопутствуют один другому, может привести к весьма тяжким последствиям не только для самого производства и людей его обслуживающих, но и для окружающей среды. В этой связи чрезвычайно важна правильная оценка уже на стадии проектирования пожаро- и взрывопредупреждения и защиты. Именно этой цели служат ГОСТ ССБТ, СниП, нормы технологического проектирования, созданные на основе изучения и обобщения науки и практики в области борьбы с пожарами и взрывами на производстве.
Анализ аварий в химической промышленности показывает, что, несмотря на многообразие технологических схем, оборудования и самих процессов, характер их опасности во многом схож. Для предаварийного состояния характерно образование взрывоопасных газопаровых смесей, накопление и образование взрывоопасных пылевоздушных смесей, жидких и твердых взрывоопасных продуктов в аппаратах и коммуникациях и инициирование воспламенения и взрыва источниками воспламенения; образование взрывоопасного облака в производственных зданиях, а также на территории предприятия и т.д.
Это говорит о том, что, проводя анализ пожаро- и взрывоопасности технологического процесса в целом, необходимо знать пожаро- и взрывоопасные свойства веществ, поступающих и образующихся в производстве, знать их количество, степень пожаро- и взрывоопасности среды внутри аппаратов и оборудования, а также возможные причины выхода горючих веществ в производственное помещение, причины и пути распространения пожара по коммуникациям и производственному зданию. Необходимо также определить возможность появления внутренних и внешних источников воспламенения и инициирования взрыва как в аппарате, так и в производственных зданиях и не территории предприятия и т.д.
Требования к пожару- и взрывоопасности промышленных объектов сформулированы в ГОСТ 12.1.004-85 "Пожарная безопасность. Общие требования", ГОСТ 12.1.033-81 "Пожарная безопасность. Термины и определения", ГОСТ 12.1.010-76 "Взрывоопасность. Общие требования".
Рекомендации ГОСТ определяют два основных принципа обеспечения пожаро- и взрывобезопасности:
-предотвращение образования горючей и взрывоопасной среды;
-пожаро- и взрывозащита технологических процессов, помещений и зданий и трактуют пожарную безопасность как "состояние объекта, при котором с установленной вероятностью исключается возможность возникновения и развития пожара, а также обеспечивается защита материальных ценностей", а взрывобезопасность как "состояние производственного процесса, при котором исключается возможность взрыва, или в случае его возникновения предотвращается воздействие на людей вызываемых им опасных и вредных факторов и обеспечивается сохранение материальных ценностей".
К опасным и вредным факторам, которые могут воздействовать на людей в результате пожара и взрыва, относятся: пламя, ударная волна, обрушения оборудования, коммуникаций зданий и сооружений и их осколков, образование при взрыве и пожаре и выход из поврежденных аппаратов содержащихся в них вредных веществ и т.д.
Производственные процессы, за исключением процессов, связанных с взрывчатыми веществами, должны разрабатываться так, чтобы вероятность возникновения пожара или взрыва на любом участке в течении года не превышала 0,000001, а система пожаро- и взрывозащиты, разрабатываемая для каждого конкретного объекта из расчета, что нормативная величина воздействия опасных факторов пожара или взрыва на людей принимается равной не более 0,000001 в год в расчете на отдельного человека. При этом надо иметь в виду, что безопасность людей должна быть обеспечена при возникновении пожара в любом месте объекта, а пожарная безопасность объекта как в его рабочем состоянии, так и в случаях аварийной обстановки.
Основные меры обеспечения пожаро- и взрывобезопасности производственных процессов могут быть представлены следующей схемой, см. рис.1.
Задачи
Задача1.
Рассчитать эффективность природной вентиляции помещения экономического отдела.
Основный выходные данные:
Габариты помещения:
- длина - 7, м;
- ширина - 4,4, м;
- высота – 4, м;
количество работающих – 5
размеры форточки – 0,21 , м2.
Решение
В соответствии с СниП 2.09.04-87 объем рабочего помещения, которое приходится на одного работающего не менее 40 м3. В противоположном случае для нормальной работы в помещении необходимо обеспечивать постоянный воздухообмен с помощью вентиляции размером не менее L’= 30 м3/час на одного работающего.
Таким образом, необходимый воздухообмен Lн вычисляется по формуле
Lн = L’·n, м3/час,
где n – количество работающих.
Lн = 30·5 = 150 м3/час.
Фактическийвоздухообмен в отделе производится с помощью природной вентиляции как неорганизованно – через различные щели дверных и оконных проемов так и организованно – через форточку.
Фактическийвоздухообмен Lф, м3/час, вычисляется по формуле:
Lф = м·F·V·3600,
где м – коэффициент расхода воздуха м=0,55;
F – площадь форточки, через которую будет выходить воздух, м2;
V – скорость выхода воздуха, м/с. Ее можно рассчитать по формуле:
где g – ускорение свободного падения;
DH2 – тепловой напор, под действием которого будет выходить воздух, кг/м2:
DH2 = h2(yн – увп),
где h2 – высота от площади равных давлений до центра форточки.
h2 = 2-0,75 = 1,25 м
yн, увп – соответственно объемные массы воздуха снаружи и внутри помещения, кгс/ м3.
Объемные массы воздуха определяется по формуле:
У = 0,465·Рб/Т
где Рб – барометрическое давление, мм. рт. ст.;
Т – температура воздуха, К.
Для отдела где выполняются легкие работы соответственно с ГОСТ 12.1.005-88 для теплого периода года температура должна составлять не больше 301 К, для холодного 290 К.
Для внешнего воздуха температуру берем соответственно СниП 2.04.05.-91:
- для лета Т=297 К;
- для зимы Т=262 К.
Для лета
Ун = 0,465·750/297=1,17 кгс/ м3
Увп = 0,465·750/301=1,16 кгс/ м3
Для зимы
Ун = 0,465·750/262=1,33 кгс/ м3
Увп = 0,465·750/290=1,2 кгс/ м3
Соответственно
Для лета
DH2л = 1,25·(1,17-1,16)=0,0125 кг/м2
Для зимы
DH2з = 1,25·(1,33-1,2)=0,163 кг/м2