Смекни!
smekni.com

Поражение электричеством. Правила расследования несчастных случаев на производстве (стр. 4 из 4)

В настоящее время применяют такие звукопоглощающие материалы, как ультратонкое стекловолокно, капроновое волокно, минеральная вата, древесноволокнистые и минераловатные плиты на различных связках с окрашенной и профилированной поверхностью. Звукопоглощающие свойства пористого материала зависят от толщины слоя, частоты звука, наличия воздушного промежутка между слоем и отражающей стенкой, на которой он установлен.

Практически толщина облицовок составляет 20...200 мм, при этом максимальное звукопоглощение обеспечивается на средних и высоких частотах (α = 0,6–0,9). Для увеличения звукопоглощения на низких частотах и для экономии материала между слоем и ограждением делают воздушный промежуток.

Выбор конструкции звукопоглощающей облицовки зависит от частотных характеристик шума в помещении и звукопоглощающих свойств конструкции, при этом максимуму в спектре шума должен соответствовать максимум коэффициента звукопоглощения на этих же частотах.

2 Акустические экраны

Для защиты работающих от непосредственного (прямого) воздействия шума используют экраны, устанавливаемые между источником шума и рабочим местом. Акустический эффект экрана основан на образовании за ним области тени, куда звуковые волны проникают лишь частично.

В особо благоприятных условиях экраны обеспечивают снижение уровня шума на 25 дБ. Однако практически нет оснований ожидать снижения уровня шума более чем на 10 дБ, а в ряде случаев уменьшение шума с помощью экранов едва-едва оправдывает вложенные затраты.

Преграды можно эффективно использовать только в открытом пространстве или в акустически обработанных помещениях. Для повышения эффективности экраны часто делают сложной формы, при этом их облицовывают звукопоглощающим материалом.

3 Звукоизолирующие ограждения

Звукоизоляция может определяться как отражением (рассеянием) звуковой волны от перегородки, так и поглощением звуковой энергии в перегородке.

Звукоизоляция ограждений тем выше, чем они тяжелее, она меняется по так называемому закону массы; так, увеличение массы в 2 раза приводит к повышению звукоизоляции на 6 дБ;

Звукоизоляция одного и того же ограждения возрастает с увеличением частоты, другими словами, на высоких частотах эффект от установки ограждения будет значительно выше, чем на низких частотах.

Большое влияние на звукоизоляцию оказывают всякого рода щели и отверстия в перегородках, ограждениях, окнах, дверях. На это обстоятельство часто не обращают должного внимания, что приводит к значительному ухудшению звукоизоляции.

В качестве звукопоглощаюших используются материалы: объемные волокнистые, вспененные полимерные и комбинированные.

Волокнистые материалы обладают высоким звукопоглощением и могут быть изготовлены из отходов текстильной промышленности по экологически чистой технологии. Предпочтительным является использование синтетических волокон в силу их прочности, стойкости к старению, устойчивости к гниению, воздействию грибка, атмосферным воздействиям, огнестойкости.

Широко используются материалы на основе стеклянных или базальтовых волокон. Так теплозвукоизоляционные маты марки СМ производятся из отходов производства стеклянного волокна и покрыты с двух сторон стеклотканью. Базальтовые маты БЗМ из супертонких стеклянных волокон горных пород, облицованных акустически прозрачной оболочкой, применяют в качестве звукопоглощающего наполнителя в средствах шумозащиты, работающих при высоких температурах, например, в глушителях шума.

К вспененным полимерным материалам относятся эластичный пенополиуретан, обладающий открытоячеистой структурой. Он стоек к действию бензина, масел, малогигроскопичен и используется в качестве звуко- и теплоизоляционного материала.

Звукопоглощающие материалы и конструкции предназначены для поглощения звука как в помещениях с источником, так и в соседних помещениях.

Для уменьшения шума в помещениях, соседних с помещением с источником этого шума, метод звукоизоляции является значительно более эффективным по сравнению с методом звукопоглощения. Звукоизолирующие конструкции ослабляют шум в соседних помещениях на 30...50 дБ, в то время как установка в помещении одних звукопоглотителей даже с высокими звукопоглощающими свойствами дает снижение шума всего на 6...8 дБ. В то же время для эффективной защиты от шума мощных источников, например реактивных двигателей в испытательных боксах, требуется использование методов и звукоизоляции, и звукопоглощения.

Звукоизолирующие кожухи, кабины. Звукоизолирующими кожухами закрывают наиболее шумные машины и механизмы, локализуя таким образом источник шума. Кожухи изготовляют обычно из дерева, металла или пластмассы. Внутреннюю поверхность стенок кожуха обязательно облицовывают звукопоглощающим материалом. С наружной стороны на кожух иногда наносят слой вибродемпфирующего материала. Кожух должен плотно закрывать источник шума.

4 Глушители шума

Для снижения воздушного шума, создаваемого газодинамическими установками, содержащими участки с движением газа, используют глушители шума. Их главное назначение – существенно снизить шум, вызываемый потоком газа на выходе канала, где происходит выпуск газов в атмосферу.

Глушители шума можно разделить на абсорбционные (диссипативные), реактивные и комбинированные. В диссипативных глушителях снижение шума достигается за счет потерь акустической энергии на трение в звукопоглощающих материалах (волокнистых или пористых поглотителях), расположенных на пути распространения звука.

В реактивных глушителях (так называемых отражающих) это уменьшение шума достигается отражением энергии набегающих звуковых волн обратно к источнику. Глушители, в которых наблюдаются и диссипация, и отражение звуковой энергии, называют комбинированными. Строго говоря, любой глушитель является комбинированным, так как диссипативные элементы глушителей частично отражают волны, а в реактивных – энергия колебаний после переотражений переходит в тепловую.


Список используемой литературы

1. Иванов, Н.И. Проблема загрязнения окружающей среды / Н.И. Иванов // Новое в экологии и безопасности жизнедеятельности: Доклады III Всероссийской научно-практической конференции. Т. 1. – СПб.: 1998. – С. 60–71.

2. Комкин, Л.И. Шум и его воздействие на человека / Л.И. Комкин // Безопасность жизнедеятельности. – 2004. – № 10. – Приложение. – 16 с.

3. Безопасность жизнедеятельности. / П.Г. Белов, А.Ф. Козьяков. С.В. Белов и др.; Под ред. С.В. Белова. – М.: Высш. Шк., 2000.

4. ГОСТ 12.1.004-91 Пожарная безопасность. Общие требования, М., 1992.

5. Быстров В.П. Сборник нормативных документов и актов по охране труда предприятия, учреждения, учебного заведения. Симферополь. 2001.

6. Князевский Б.А. Охрана труда. М. 1992.