В процессе декомпрессии вследствие падения парциального давления в альвеолярном воздухе происходит десатурация азота из тканей. Выделение азота осуществляется через кровь и затем легкие. Продолжительность десатурации зависит в основном от степени насыщения тканей азотом (легочные альвеолы диффундируют 150 мл азота в минуту). Если декомпрессия производится форсированно, в крови и других жидких средах образуются пузырьки азота, которые вызывают газовую эмболию и как ее проявление–декомпрессионную болезнь. Тяжесть декомпрессионной болезни определяется массовостью закупорки сосудов и их локализацией. Развитию декомпрессионной болезни способствует переохлаждение и перегревание организма. Понижение температуры приводит к сужению сосудов, замедлению кровотока, что замедляет удаление азота из тканей и процесс десатурации. При высокой температуре наблюдается сгущение крови и замедление ее движения.
Терморегуляция организма человека. Основными параметрами, обеспечивающими процесс теплообмена человека с окружающей средой, как было показано выше, являются параметры микроклимата. В естественных условиях на поверхности Земли (уровень моря) эти параметры изменяются в существенных пределах. Так, температура окружающей среды изменяется от - 88 до +60 °С; подвижность воздуха –от 0 до 100 м/с; относительная влажность–от 10 до 100% и атмосферное давление –от 680 до 810 мм рт. ст.
Вместе с изменением параметров микроклимата меняется и тепловое самочувствие человека. Условия, нарушающие тепловой баланс, вызывают в организме реакции, способствующие его восстановлению. Процессы регулирования тепловыделений для поддержания постоянной температуры тела человека называются терморегуляцией. Она позволяет сохранять температуру внутренних органов постоянной, близкой к 36,5 °С. Процессы регулирования тепловыделений осуществляются в основном тремя способами: биохимическим путем; путем изменения интенсивности кровообращения и интенсивности потовыделения.
Терморегуляция биохимическим путем заключается в изменении интенсивности происходящих в организме окислительных процессов. Например, мышечная дрожь, возникающая при сильном охлаждении организма, повышает выделение теплоты до 125... 200Дж/с.
Терморегуляция путем изменения интенсивности кровообращения заключается в способности организма регулировать подачу крови (которая является в данном случае теплоносителем) от внутренних органов к поверхности тела путем сужения или расширения кровеносных сосудов. Перенос теплоты с потоком крови имеет большое значение вследствие низких коэффициентов теплопроводности тканей человеческого организма–0,314...1,45 Вт/(м'°С) При высоких температурах окружающей среды кровеносные сосуды кожи расширяются, и к ней от внутренних органов притекает большое количество крови и, следовательно, больше теплоты отдается окружающей среде. При низких температурах происходит обратное явление: сужение кровеносных сосудов кожи, уменьшение притока крови к кожному покрову и, следовательно, меньше теплоты отдается во внешнюю среду (рис.1.2). Как видно из рис.1.2, кровоснабжение при высокой температуре среды может быть в 20...30 раз больше, чем при низкой. В пальцах кровоснабжение может изменяться даже в 600 раз.
Терморегуляция путем изменения интенсивности потовыделения заключается в изменении процесса теплоотдачи за счет испарения. Испарительное охлаждение тела человека имеет большое значение. Так, при tос=18 °С, φ = 60%, w = О количество теплоты, отдаваемой человеком в окружающую среду при испарении влаги, составляет около 18% общей теплоотдачи. При увеличении температуры окружающей среды до +27 °С доля Qп возрастает до 30% и при 36,6 °С достигает 100%.
Терморегуляция организма осуществляется одновременно всеми способами. Так, при понижении температуры воздуха увеличению теплоотдачи за счет увеличения разности температур препятствуют такие процессы, как уменьшение влажности кожи, и следовательно, уменьшение теплоотдачи путем испарения, снижение температуры кожных покровов за счет уменьшения интенсивности транспортирования крови от внутренних органов, и вместе с этим уменьшение разности температур.
На рис.1.3. и 1.4. приведены тепловые балансы человека при различных объемах производимой работы в разных условиях окружающей среды. Тепловой баланс, приведенный на рис.1.3, составлен по экспериментальным данным для случая езды на велосипеде при температуре воздуха 22,5 °С и относительной влажности 45%; на рис.1.4. приведен тепловой баланс человека, идущего со скоростью 3,4 км/ч при различных температурах окружающего воздуха и постоянной относительной влажности 52%. Приведенные на рис.1.3. и 1.4. примеры процесса теплообмена человека с окружающей средой построены при условии соблюдения теплового баланса Qтп=Qто, поддержанию которого способствовал механизм терморегуляции организма. Экспериментально установлено, что оптимальный обмен веществ в организме и соответственно максимальная производительность труда имеют место, если составляющие процесса теплоотдачи находятся в следующих пределах: Qк+Qт≈30%; Q^≈45%; Qп≈20% и Q^≈5%. Такой баланс характеризует отсутствие напряженности системы терморегуляции.
Параметры микроклимата воздушной среды, которые обусловливают оптимальный обмен веществ в организме и при которых нет неприятных ощущений и напряженности системы терморегуляции, называются комфортными или оптимальными. Зона, в которой окружающая среда полностью отводит теплоту, выделяемую организмом и нет напряжения системы терморегуляции, называется зоной комфорта. Условия, при которых нормальное тепловое состояние человека нарушается, называются дискомфортными. При незначительной напряженности системы терморегуляции и небольшой дискомфортности устанавливаются допустимые метеорологические условия.
Гигиеническое нормирование параметров микроклимата производственных помещений. Нормы производственного микроклимата установлены системой стандартов безопасности труда ГОСТ 12.1.005–88 «Общие санитарно-гигиенические требования к воздуху рабочей зоны». Они едины для всех производств и всех климатических зон с некоторыми незначительными отступлениями.
В этих нормах отдельно нормируется каждый компонент микроклимата в рабочей зоне производственного помещения: температура, относительная влажность, скорость воздуха в зависимости от способности организма человека к акклиматизации в разное время года, характера одежды, интенсивности производимой работы и характера тепловыделений в рабочем помещении.
Для оценки характера одежды (теплоизоляции) и акклиматизации организма в разное время года введено понятие периода года. Различают теплый и холодный период года. Теплый период года характеризуется среднесуточной температурой наружного воздуха +10 °С и выше, холодный –ниже +10 °С
При учете интенсивности труда все виды работ, исходя из общих энергозатрат организма, делятся на три категории: легкие, средней тяжести и тяжелые. Характеристику производственных помещений по категории выполняемых в них работ устанавливают по категории работ, выполняемых 50% и более работающих в соответствующем помещении.
К легким работам (категории I) с затратой энергии до 174 Вт относятся работы, выполняемые сидя или стоя, не требующие систематического физического напряжения (работа контролеров, в процессах точного приборостроения, конторские работы и др.). Легкие работы подразделяют на категорию Iа (затраты энергии до 139 Вт) и категорию Iб (затраты энергии 140...174 Вт). К работам средней тяжести (категория II) относят работы с затратой энергии 175...232 Вт (категория IIа) и 233...290 Вт (категория IIб). В категорию IIа входят работы, связанные с постоянной ходьбой, выполняемые стоя или сидя, но не требующие перемещения тяжестей, в категорию IIδ –работы, связанные с ходьбой и переноской небольших (до 10 кг) тяжестей (в механосборочных цехах, текстильном производстве, при обработке древесины и др.). К тяжелым работам (категория III) с затратой энергии более 290 Вт относят работы, связанные с систематическим физическим напряжением, в частности с постоянным передвижением, с переноской значительных (более 10 кг) тяжестей (в кузнечных, литейных цехах с ручными процессами и др.).
По интенсивности тепловыделений производственные помещения делят на группы в зависимости от удельных избытков явной теплоты. Явной называется теплота, воздействующая на изменение температуры воздуха помещения, а избытком явной теплоты–разность между суммарными поступлениями явной теплоты и суммарными теплопотерями в помещении. Явная теплота, которая образовалась в пределах помещения, но была удалена из него без передачи теплоты воздуху помещения (например, с газами от дымоходов или с воздухом местных отсосов от оборудования), при расчете избытков теплоты не учитывается. Незначительные избытки явной теплоты –это избытки теплоты, не превышающие или равные 23 Вт на 1 м3 внутреннего объема помещения. Помещения со значительными избытками явной теплоты характеризуются избытками теплоты более 23 Вт/м3.
Интенсивность теплового облучения работающих от нагретых поверхностей технологического оборудования, осветительных приборов, инсоляции на постоянных и непостоянных рабочих местах не должна превышать 35 Вт/м2 при облучении 50% поверхности человека и более, 70 Вт/м2–при облучении 25...50% поверхности и 100 Вт/м2–при облучении не более 25% поверхности тела.
Интенсивность теплового облучения работающих от открытых источников (нагретого металла, стекла, открытого пламени и др.) не должна превышать 140 Вт/м2, при этом облучению не должно подвергаться более 25% поверхности тела и обязательно использование средств индивидуальной защиты.
В рабочей зоне производственного помещения согласно ГОСТ 12.1.005–88 могут быть установлены оптимальные и допустимые микроклиматические условия. Оптимальные микроклиматические условия – это такое сочетание параметров микроклимата, которое при длительном и систематическом воздействии на человека обеспечивает ощущение теплового комфорта и создает предпосылки для высокой работоспособности. Допустимые микроклиматические условия – это такие сочетания параметров микроклимата, которые при длительном и систематическом воздействии на человека могут вызвать напряжение реакций терморегуляции и которые не выходят за пределы физиологических приспособительных возможностей. При этом не возникает нарушений в состоянии здоровья, не наблюдаются дискомфортные теплоощущения, ухудшающие самочувствие и понижение работоспособности. Оптимальные параметры микроклимата в производственных помещениях обеспечиваются системами кондиционирования воздуха, а допустимые параметры – обычными системами вентиляции и отопления.