Смекни!
smekni.com

Выполнение расчетно-графических работ по прогнозированию и оценке обстановки при чрезвычайных ситуациях (стр. 7 из 13)

(5.77)

Геометрические параметры факела пожара разлития находятся по формуле Томаса:

(5.78)

где Wв =

— безразмерная скорость ветра; mВЫГ — массовая скорость выгорания, кг/(м2 * с);
— плотность пара и воздуха, соответственно, кг/м3 ; g— ускорение силы тяжести, м/с2; D— диаметр зеркала разлива, м;
— скорость ветра, м/с.

Эмпирические коэффициенты по формуле Томаса (а = 55; b = 0,67 и с = — 0,21) получены по результатам экспериментов, выполненных для широкого диапазона изменения параметров:

Скорость выгорания жидкостей определяют, как правило, экспериментально. Для экспертной оценки скорости выгорания mВЫГ (кг/(м2 * с)) можно воспользоваться эмпирической формулой

(5.79)

где

— плотность жидкости, кг/м3;
— низшая теплота сгорания топлива, Дж/кг; LИСП — скрытая теплота испарения жидкости, Дж/кг, С — коэффициент пропорциональности, значение которого, равное 1,25 *10-6 м/с, получено путем обработки многочисленных экспериментальных данных по выгоранию большинства органических жидкостей и их смесей (рис. 5.7).

Плотность теплового потока, падающего на элементарную площадку, расположенную на уровне грунта (см. рис. 5.6),

(кВт/м2) вычисляется по формуле:

(5.80)

где

— угловой коэффициент излучения с площадки на боковой поверхности пламени пожара разлива на единичную площадку, расположенную на уровне грунта (рис. 5.6), определяемый по графику на рис. 5.8; qСОБ — средняя по поверхности плотность потока собственного излучения пламени кВт/м.3

Для ориентировочных расчетов можно принять следующие значения qСОБ (кВт/м2):

Сжиженный природный газ (метан) – 150…170

Сжиженный нефтяной газ – 50…60

Бензин – 120…140

Нефть – 60…80

Мазут – 50…70

Керосин – 80…00

Горение парогазовоздушного облака

Крупномасштабное диффузионное горение парогазовоздушного (ПГВ) облака, реализуемое при разгерметизации резервуара с горючей жидкостью или газом под давлением, носит название «огненный шар». Плотность теплового потока, падающего с поверхности «огненного шара» на элементарную площадку на поверхности мишени qпад .(кВт/м2), равна

qпад =qсоб

ехр
,

где qсоб- платность потока собственного излучения «огненного шара», кВт/м2 (допускается принимать равной 450 кВт/м2);

- угловой коэффициент излучения с «огненного шара» на единую площадку на облучаемой поверхности; Х – расстояние от точки на поверхности земли непосредственно под центром «огненного шара» до облучаемого объекта, м; Н – высота центра «огненного шара», м, которую допускается принимать равной 0,5Dэф – эффективный диаметр «огненного шара», м, определяемый по формуле

Dэф= 5,33m0,327,

Где m – масса горючего вещества, кг.


Угловой коэффициент излучения с «огненного шара» на единичную площадку на облучаемой поверхности при Н=0,5Dэф определяется по формуле

.

Время существования «огненного шара» r (с) рассчитывается по формуле

r = 0,92m0,303.

Рассчитав значения qпад и r по формулам (5.81) и (5.84), по формуле

Определяется величина пробит-функции, а по таблице П.1 вероятность летального исхода при термическом поражении Рпор.

Таблица П.1.

Значения пробит-функции

Рпор% 0 1 2 3 4 5 6 7 8 9
0 2,67 2,95 3,12 3,25 3,38 3,45 3,52 3,59 3,66
10 3,72 3,77 3,82 3,87 3,92 3,96 4,01 4,05 4,08 4,12
20 4,16 4,19 4,23 4,26 4,29 4,33 4,36 4,39 4,42 4,45
30 4,48 4,50 4,53 4,56 4,59 4,61 4,64 4,67 4,69 4,72
40 4,75 4,77 4,80 4,82 4,85 4,87 4,90 4,92 4,95 4,97
50 5,00 5,03 5,05 5,08 5,10 5,13 5,15 5,18 5,20 5,23
60 5,25 5,28 5,31 5,33 5,36 5,39 5,41 5,44 5,47 5,50
70 5,52 5,55 5,58 5,61 5,64 5,67 5,71 5,74 5,77 5,82
80 5,84 5,88 5,92 5,95 5,99 6,04 6,08 6,13 6,18 6,23
90 6,28 6,34 6,41 6,48 6,55 6,64 6,75 6,88 7,05 7,33
99 7,33 7,37 7,41 7,46 7,51 7,58 7,65 7,75 7,88 8,09

Таблица П.2.

Вероятность Р13 получения зданиями различной степени повреждения (I)

J-Jк Степень повреждения
0 1 2 3 4 5
0 0,9 0,1
1 0,4 0,5 0,1
2 0,1 0,3 0,5 0,1
3 0 0,1 0,3 0,5 0,1
4 0 0 0,1 0,3 0,5 0,1
5 0 0 0 0,1 0,3 0,6
6 0 0 0 0 0,1 0,9

Таблица П.3.1.

Среднесуточное распределение городского населения по месту его пребывания

Времясуток,ч Место нахождения,%
Жилыездания и здания культ-быт. назначения Произ-водст-венныездания В транспорте На улице (открыто)
Города с населением (млн.чел.)
0,25-0,5 0,5-1,0 Более 1,0 0,25-0,5 0,5-1,0 Более1,0
1 6 94 6 - - - - - -
6 7 74 6 7 9 12 13 11 8
7 10 22 50 9 11 17 19 17 11
10 13 28 52 6 7 10 14 13 10
13 15 45 37 4 4 7 14 14 11
15 17 27 49 8 9 13 15 15 12
17 19 45 24 10 12 15 20 18 15
19 01 77 14 4 4 6 5 5 3

Таблица П.3.2.

Среднесуточное распределение сельского населения по месту пребывания

Время суток, ч Место нахождения, %
Поле и с/х произ-ва Жилые помещения
днем ночью днем ночью
1 6 25 10 75 90
6 7 60 40 40 60
7 10 75 75 25 25
10 13 80 80 20 20
13 15 85 75 15 25
15 17 85 50 15 50
17 19 80 40 20 60
19 01 50 20 50 80

Прогнозирование и оценка обстановки при авариях, сопровождающихся пожарами и взрывами осуществляется с использованием данной методической разработки и «Руководства по определению зон воздействия опасных аварий с сжиженными газами, горючими жидкостями и АХОВ на объектах железнодорожного транспорта» ( Приложение 3)

Оценка радиационной обстановки

Общие положения

Радиационная безопасность населения – состояние защищенности настоящего и будущего поколения людей от вредного для их здоровья воздействия ионизирующего излучения.

Человек подвергается облучению двумя способами. Радиоактивные вещества могут находиться вне организма и облучать его снаружи (внешнее облучение), и если радиоактивные вещества пополи внутрь человека с воздухом, водой, через открытую рану или другим путем (внутреннее облучение).

Внутреннее и внешнее облучение человека происходит от природных и искусственных источников ионизирующего излучения.

Источник ионизирующего излучения – устройство или радиоактивное вещество, испускающее или способное испускать ионизирующее излучение.

Радиационная безопасность населения обеспечивается ограничением воздействия от всех основных видов облучения. Свойства источников и возможности регулирования различных видов облучения существенно разнятся. Поэтому регламентация обеспечения радиационной безопасности производится для каждого источника отдельно с использованием различных методологических подходов и технических способов.

Радиоактивное загрязнение при разрушении (аварии ) объектов ядерно-топливного цикла и перевозке радиоактивных материалов