Смекни!
smekni.com

Выполнение расчетно-графических работ по прогнозированию и оценке обстановки при чрезвычайных ситуациях (стр. 1 из 13)

Министерство транспорта Российской Федерации

Федеральное Агентство железнодорожного транспорта

Государственное образовательное учреждение высшего

профессионального образования

Омский государственный университет путей сообщения

цикл «Гражданская оборона и защита в ЧС»

УЧЕБНО-МЕТОДИЧЕСКАЯ РАЗРАБОТКА

к выполнению расчетно-графических (контрольных) работ

по прогнозированию и оценке обстановки при чрезвычайных ситуациях.

Омск 2007


ПРОГНОЗИРОВАНИЕ И ОЦЕНКА ОБСТАНОВКИ ПРИ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЯХ

Прогнозирование и оценка обстановки при чрезвычайных ситуациях проводятся для заблаговременного принятия мер по предупреждению чрезвычайных ситуаций, смягчению их последствий, определению сил и средств, необходимых для ликвидации последствий аварий, катастроф и стихийных бедствий.

Целью прогнозирования и оценки последствий обстановки чрезвычайных ситуаций является определение размеров зоны чрезвычайной ситуации, степени разрушения зданий и сооруже­ний, а также потерь среди персонала объекта и населения.

Как правило, эта работа проводится в три этапа.

На первом этапе производится прогнозирование последствий наиболее вероятных чрезвычайных ситуаций природного и техногенного характера, осуществляемое для среднестатистических условий (среднегодовые метеоусловия; среднестатистическое распределение населения в домах, на улице, в транспорте, на работе и т. п.; средняя плотность населения и т. д.). Этот этап работы проводится до возникновения чрезвычайных ситуаций.

На втором этапе осуществляется прогнозирование последствий и оценка обстановки сразу же после возникновения источника чрезвычайных ситуаций по уточненным данным (время возникновения чрезвычайной ситуации, метеорологические условия на этот момент и т. д.).

На третьем этапе корректируются результаты прогнозирования и фактической обстановки по данным разведки, предшествующей проведению аварийно-спасательных и других неотложных работ.

В настоящем пособии рассматриваются методы прогнозирования последствий опасных явлений, соответствующие первому этапу.

Независимо от источника чрезвычайной ситуации можно выделить шесть основных поражающих факторов, воздействующих на людей, животных, окружающую природную среду, инженерно-технические сооружения и т. д. Это:

— барическое воздействие (взрывы взрывчатых веществ, газовоздушных облаков, технологических сосудов под давлением, взрывы обычных и ядерных средств массового поражения и т. д.);

— термическое воздействие (тепловое излучение при техногенных и природных пожарах, огненный шар, ядерный взрыв и т. д.);

— токсическое воздействие (техногенные аварии на химически опасных производствах, шлейф продуктов горения при пожарах, применение химического оружия, выбросы токсических газов при извержениях вулканов и т. д.);

— радиационное воздействие (техногенные аварии на радиационно-опасных объектах, ядерные взрывы и т. д.);

— механическое воздействие (осколки, обрушения зданий, сели, оползни и т. д.);

— биологическое воздействие (эпидемии, бактериологическое оружие и т. д.).

При прогнозировании последствий опасных явлений, как правило, используют детерминированные или вероятностные методы.

В детерминированных методах прогнозирования определенной величине негативного воздействия поражающего фактора источника чрезвычайной ситуации соответствует вполне конкретная степень поражения людей, инженерно-технических сооружений и т. п.

Так, например, величина избыточного давления на фронте ударной волны

Рф = 10 кПа принимается безопасной для человека. При величине избыточного давления на фронте ударной волны
Рф > 100 кПа будет иметь место смертельное поражение людей.

При токсическом воздействии такими величинами являются пороговая токсодоза и летальная токсодоза.

Область, ограниченная линией, соответствующей определенной степени негативного воздействия, носит название зоны воздействия этого уровня (летального, среднего, порогового и т. п.).

В действительности при воздействии одной и той же дозы негативного воздействия на достаточно большое количество людей, зданий и сооружений, компонентов окружающей природной среды и т.д. поражающий эффект будет различен и приведенные выше значения соответствуют математическому ожиданию данной степени негативного воздействия.

Другими словами, негативное воздействие поражающих факторов носит вероятностный характер. Величина вероятности поражения (эффект поражения) Рпор (см. табл.П.1_) измеряется в долях единицы или процентах и определяется, как правило, по функции Гаусса (функции ошибок) через «пробит-функцию» Рr

где f— функция Гаусса; a, b — константы, зависящие от вида и параметров негативного воздействия; D — доза негативного воздействия, равная:

- при термическом воздействии;

- при барическом воздействии;

- при токсическом воздействии;

- при радиационном воздействии;

Здесь q — плотность теплового потока,

— время воздействия;
Рф — избыточное давление на фронте ударной волны; I+ — импульс фазы сжатия ударной волны;

С — концентрация, токсиканта; DЭф — эффективная доза ионизирующего излучения; n — показатель степени.

Поскольку чрезвычайные ситуации природного характера и техногенные чрезвычайные ситуации имеют свою специфику, рассмотрим методики прогнозирования их последствий раздельно.

ПРОГНОЗИРОВАНИЕ И ОЦЕНКА ОБСТАНОВКИ ПРИ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЯХ ПРИРОДНОГО ХАРАКТЕРА

Основными характеристиками землетрясений являются магнитуда и интенсивность.

Магнитуда землетрясения является мерой общего количества энергии, излучаемой при сейсмическом толчке в форме упругих волн, в гипоцентре землетрясения, расположенном в очаге землетрясения на глубине до 730 км. Проекция гипоцентра на поверхность земли определяет эпицентр землетрясения, вокруг которого располагается область, называемая эпицентральной и испытывающая наибольшие колебания грунта.

Интенсивность землетрясения определяется величиной колебания грунта на поверхности земли. Интенсивность в разных пунктах наблюдения различна, однако магнитуда у толчка только одна.

Сила землетрясения исчисляется в баллах, причем, обычно применяют либо шкалу Рихтера, использующую величину магнитуды (1 < М < 9), либо международную шкалу MSK (или близкую к ней шкалу Меркалли), использующие величину интенсивности землетрясения (1 < J< 12).

Землетрясения в зависимости от интенсивности колебаний грунта на поверхности земли классифицируются следующим образом: слабые (1—3 балла); умеренные (4 балла), довольно сильные (5 баллов); сильные (6 баллов); очень сильные (7 баллов); разрушительные (8 баллов); опустошительные (9 баллов); уничтожающие (10 баллов); катастрофические (11 баллов); сильно катастрофические (12 баллов).

Интенсивность землетрясение J (R) определяется по формуле

; (5.3)

где R- расстояние от эпицентра землетрясения, км; h – глубина гипоцентра землетрясения, км;

М - магнитуда землетрясение, равная:

; (5.4)

где Zm– амплитуда земных колебаний, мкм.

Реальная интенсивность (Jреал) землетрясения и степень разрушения зданий и сооружений будет зависеть от типа грунта как под застройкой, так и на остальной окружающей местности:

; (5.5)

Где

Jпост – приращение балльности для грунта ( по сравнению с гранитом), на котором построена здание;
Jо.м. – приращение балльности для грунта в окружающей местности (табл. 5.1)

ЗНАЧЕНИЕ

Jпост,
J о.м

Таблица 5.1

Тип грунта
Jпост,
J о.м
Тип грунта
Jпост,
J о.м
Гранит 0 Песчаные 1,6
Известняк 0,52 Глинистые 1,61
Щебень, гравий 0,92 Насыпные рыхлые 2,6
Полускальные грунты 1,36

Все здания и типовые сооружения традиционной постройки (без антисейсмических мероприятий) подразделяются на три группы, каждой из которых свойственна определенная сейсмостойкость (табл. 5.2).