Для улавливания нагретых паров и газов, выделяющихся из установки ПФЛ при заталкивании вагонеток, над входным проемом ферментационных линий (габаритные размеры проема — 3650x3600 мм) устанавливаются воздухоприемники местной вытяжной вентиляции. Местные отсосы выполнены в виде спаренных зонтов расположенных над проемом. Вытяжка воздуха осуществляется крышным вентилятором . Вентилятор включается одновременно с механизмом подъема шторы, закрывающей проем, и отключается при его остановке. Для повышения эффективности отсосов к зонтам с боков подвешиваются брезентовые шторки, натяжение которых обеспечивается прикрепленными к ним грузами.
6. Технологическая часть: обоснование, выбор схемы установки аппаратов, их устройство, конструктивное исполнение, принцип работы.
На табачных фабриках очистке от табачной пыли подвергается воздух следующих систем: пневмотранспорта листового и резаного табака; поступающий от местных отсосов, установленных у технологического оборудования; наружный приточный и рециркуляционный воздух систем кондиционирования.
Системы пневмотранспорта выполняют на табачных фабриках технологические функции (перемещение табачного сырья). Воздух, поступающий от этих систем, имеет высокое начальное содержание пыли. Содержание пыли в воздухе от систем пневмотранспорта листового табака — около 4300 мг/м 3 , а от систем резаного табака — до 17000 мг/м 3.
Содержание пыли в воздухе от местных вытяжных систем составляло 35 мг/м 3 .
Содержание пыли в наружном приточном воздухе составляет обыч¬но 1-2 мг/м3. В рециркуляционном воздухе после очистки содержа¬ние пыли не должно превышать 30% от ПДК, т. е. 0,9 мг/м3 .
Указанные концентрации должны быть учтены при выборе пыле-улавливающего оборудования и схем очистки.
Для очистки наружного и рециркуляционного воздуха в системах кондиционирования и общеобменной приточной вентиляции табач¬ных фабрик применяют воздушные фильтры — масляные ячейковые и самоочищающиеся. Для повышения эффек¬тивности очистки рециркуляционного воздуха перспективно исполь¬зование искусственной ионизации.
При выборе оборудования для очистки выбросов от табачной пыли нужно учитывать особенности данной пыли: гидрофильность, малую плотность, значительную парусность, многокомпонентность и др. В настоящее время для очистки выбросов от табачной пыли применя¬ют два вида пылеулавливающего оборудования — циклоны и рукав¬ные фильтры.
Циклоны даже самых совершенных конструкций нецелесообразно применять в качестве единственной ступени очистки в связи с тем, что они не обеспечивают эффективное улавливание тонких фракций пыли. В то же время вполне рационально применять циклоны на первой ступени очистки, до рукавных фильтров.
В качестве единственной ступени, а при двухступенчатой очистке на II ступени на табачных фабриках обычно используют рукавные фильтры всасывающего типа. Широко распространены всасывающие фильтры ФВ.
В настоящее время в рукавных фильтрах в качестве фильтроваль¬ной ткани применяют главным образом сукно № 2. Эта ткань не в полной мере соответствует особенностям табачной пыли, в частно¬сти наличию в ней минерального компонента. Улучшение очистки воздуха в рукавных фильтрах может быть достигнуто при примене¬нии фильтровальной ткани из синтетических материалов.
Лучшими показателями обладает ткань из нитрона (наибольшая пылеемкость при относительно низком гидравли¬ческом сопротивлении). Данная ткань может быть рекомендована для применения в рукавных фильтрах при очистке воздуха от табачной пыли. Испыта¬ния рукавных фильтров ФВ, оснащенных фильтровальной тканью из нитрона, проведенные в производственных условиях, показали, что степень очистки составила в среднем 99,9% по сравнению с 99,2% при использовании сукна № 2.
При одноступенчатой очистке воздуха от пневмотранспорта листового и резаного табака в качестве единственной ступени применяется рукавный фильтр. При начальной запыленности воздуха около 5000-20000 мг/м3 и эффективности рукавного фильтра 99% остаточная запыленность будет 50-200 мг/м3 , что недопустимо исходя из экологических требований. Таким образом, в установках очистки воздуха от пневмотранспорта листового и резаного табака необходимо применять двухступенчатую схему: I ступень — циклон, II ступень — рукавный фильтр. Благодаря этому уменьшается из-нос фильтровальной ткани. Дополнительные затраты, связанные с устройством второй ступени, оправдывают себя также экономичес¬ки.
Рукавные фильтры типа ФРО-5000
Корпус фильтра разделен на секции, внутри размещены открытые снизу рукава. Нижняя часть рукавов прикреплена к решетке. Сверху заглушены крышками, прикрепленными к раме подвеса. Газ поступает в рукава снизу. Пыль осаждается на внутренней мосты рукавов.
Удаление осадка пыли с внутренней поверхности рукавов осуществляется обратной продувкой очищенным газом с помощью вентилятора. Для переключения секций на продувку в них предусмотрены два дроссельных клапана: один на коллекторе очищенного газа, другой — на продувочном коллекторе. Во время регенера¬ции дроссель секции на коллекторе очищенного газа зак¬рыт, а на продувочном коллекторе — открыт. Переклю¬чение потоков неочищенного и чистого газа при обрат¬ной продувке производится с помощью дроссельных заслонок с пневмоцилиндрами, работающими при дав¬лении 0,5 МПа (5 кгс/см2).
Корпус фильтров изготовлен из углеродистой стали, бункер — из коррозионностойкой стали.
Фильтры устанавливают в здании. Фильтр ФР-5000 может быть размещен и на открытом воздухе, но при этом верх фильтра закрывают утепленным шатром, а бункерную часть располагают в утеплен¬ном помещении.
Циклоны являются одними из простейших пылеулавливающих устройств.
Осаждение пыли в циклонах происходит под действием центробежной силы.
Запыленный газ по воздуховоду подается в цилиндрическую часть циклона где за счет тангенциального ввода приобретает вихревое движение. Частицы пыли под действием центробежной силы отбрасывается к стенкам циклона и ссыпаются по конической его части к разгрузочному отверстию. Обеспыленный воздух отводится из циклона через верхний патрубок.
7. Технологический расчет: обоснование кинематических, конструкционных, геометрических параметров аппаратов защиты воздуха
Расчёт циклона ЦН-15
ДЛЯ РАСЧЕТОВ ЦИКЛОНОВ НЕОБХОДИМЫ СЛЕДУЮЩИЕ ИСХОДНЫЕ ДАННЫЕ:
-количество очищаемого газа - Q = 1.4 м3/с;
-плотность газа при рабочих условиях - r = 0,89 кг/м3;
-вязкость газа - m = 22,2×10-6 Н×с/м2;
-плотность частиц пыли - rч = 1750 кг/м3;
-плотность пыли – dП = 25 мкм;
-дисперсность пыли - lgsч = 0,6;
-входная концентрация пыли – Свх = 80 г/м3.
- требуемая эффективность очистки газа от пыли не менее h = 0.87
Расчеты могут показать, что при заданных условиях невозможно обеспечить требуемое значение коэффициента очистки газов, или при этом имеют место чрезмерные потери давления. В этом случае только экономический расчет различных аппаратов пылеулавливания может установить их оптимальные параметры.
Расчет: Задаёмся типом циклона и определяем оптимальную скорость газа wопт, в сечении циклона диаметром Д.
Таблица 1
Тип циклона | ЦН-24 | ЦН-15 | ЦН-11 | СДКЦН-33 | СКЦН-34 | Сдкцн-34 |
ОптимальнаяСкорость, wоптм/с | 4,5 | 3,5 | 3,5 | 2,0 | 1,7 | 2,0 |
Выберем циклон ЦН-15, оптимальная скорость газа, в котором wопт = 3,5 м/с.
Определяем диаметр циклона, м. :
Ближайшим стандартным сечением является сечение в 700 мм.
По выбранному диаметру находим действительную скорость движения газа в циклоне, м/с
м/с,где n – число циклонов.
Действительная скорость движения газа в циклоне не должна отклоняться от оптимальной более чем на 15%.
Вычисляем коэффициент гидравлического сопротивления одиночного циклона:
где К1 – поправочный коэффициент на диаметр циклона (таблица 2);
К2 - поправочный коэффициент на запыленность газа (таблица 3);
500– коэффициент гидравлического сопротивления одиночного циклона диаметром 500 мм.
Таблица 2 Значение коэффициента К 1, для диаметров D (мм) циклона
Тип циклона ( К1 ) | 150 | 200 | 300 | 500 |
ЦН-11 | 0,94 | 0,95 | 0,96 | 1,0 |
ЦН-15 .ЦН-15У, ЦН-24 | 0,85 | А§0_ | 0,93 | 1,0 |
Таблица 3. Значение коэффициента К2 на запыленность газа при С вх ,г/м3
Тип циклона | 0 | 10 | 20 | 40 | 80 | 120 | 150 |
ЦН11 | 1 | 0.96 | 0.94 | 0.92 | 0.90 | 0.87 | 0.5 |
ЦН15 | 1 | 0.93 | 0.92 | 0.91 | 0.90 | 0.87 | 0.86 |
ЦН24 | 1 | 0.95 | 0,93 | 0.92 | 0.90 | 0.87 | 0.86 |
СДК-ЦН-34 | 1 | 0.98 | 0.947 | 0.93 | 0.915 | 0.91 | 0.90 |
Определяем гидравлическое сопротивление циклона:
Пагде р и ω соответственно плотность и скорость воздуха в расчетном сечении аппарата; 500-коэффициент гидравлического сопротивления одиночного циклона диаметром 500мм, Значение 500выбирают из таблицы 4.