прочие источники испарения, утечки через неплотности, пропуски через клапаны и воздушники на аппаратах, не подключенных к факельной линии и др - 2,7
потери на факелах (при отсутствии газгольдеров для улавливания факельного газа) - 17
потери при сжигании кокса с катализаторов, от разливов и утечек в грунт, с газами разложения на АВТ и битумных установках со шламами, глинами и т.д - 19
потери со сточными водами (до биологической очистки при содержании в них 75 мг/л нефтепродуктов) - 1
1.2.1 Резервуары хранения нефтиСамым крупным источником загрязнения атмосферного воздуха являются заводские резервуары для хранения нефти и нефтепродуктов при обычном атмосферном давлении. Выброс осуществляется через специальные дыхательные клапаны при небольшом избыточном давлении паров нефтепродукта или при вакууме в резервуаре, а также через открытые люки и возможные неплотности в кровле резервуара. Особенно увеличивается выброс при заполнении резервуара нефтью или нефтепродуктом, врезультате чего из газового пространства вытесняются в атмосферу, как правило, пары легких нефтепродуктов.
Дополнительная загазованность атмосферы происходит при нарушении герметичности резервуаров за счет коррозии крыши, если переработке подвергаются сернистые нефти. При негерметичной крыше резервуара происходит «выветривание» газового пространства: более тяжелые пары продукта выходят снизу, а воздух в таком же объеме входит сверху. При наличии ветра потери от вентиляции газового пространства увеличиваются во много раз [7].
При обследовании НПЗ ОАО «Уфанефтехим» в Башкортостане потери углеводородов по отдельным резервуарам были [30]:
Потери - %
Из резервуаров с сырой и обессоленной нефтью - 52
Из промежуточных и товарных резервуаров и емкостей с бензиновыми компонентами и светлыми продуктами - 48
в том числе:
из резервуаров с компонентами бензина от первичных и вторичных процессов - 27,2
с компонентами других светлых продуктов - 3,5
товарных резервуаров с бензином - 9,3
товарных резервуаров с другими светлыми продуктами - 7
1.2.2 Сооружения по очистке сточных вод
Открытые поверхности очистных сооружений — песколовок, нефтеловушек, пруды дополнительного отстоя, кварцевые фильтры, аэротенки I и II ступени, вторичные и третичные отстойники после аэротенков, пруды накопители — являются источниками загрязнения атмосферного воздуха и окружающей территории продуктами нефтепереработки. Средние концентрации газов в воздушных потоках от отдельных элементов очистных сооружений, а также валовые газовыделения с открытой поверхности этих объектов представлены в табл. 1.2.2 [9].
Таблица 1.2.2 -Газовыделение с поверхности очистных сооружений
Источник газовыделения | Средние концентрации газов в потоках воздуха, мг/м3 | Валовые газовыделения, г/ч | ||
углеводородов | сероводорода | углеводородов | сероводорода | |
Песколовки | 314 | 0,153 | 10600 | 103,3 |
Приемный колодец нефтеловушкинефте- | 2204 | 0,306 | 6470 | 0,9 |
Нефтеловушки | 582 | 0,302 | 50700 | 26,7 |
Приемный резервуар нефтеловушки | 221 | 0,306 | 398 | 0,55 |
Пруды дополнительного отстоя | 1800 | 0,203 | 135700 | 7,35 |
Кварцевые фильтры | 990,5 | 0,510 | 28600 | 14,7 |
У работающих фильтров концентрации сероводорода и паров углеводородов в воздушных потоках с поверхности испарения были выше, чем у фильтров, остановленных на промывку, так как промывная вода менее насыщена продуктом.
Нефтепродукты, поступающие с оборотной водой, в основном испаряются в воздух; например в градирнях НПЗ удаляется с воздухом через вентиляторы 286 кг/ч, или 2500 т/год углеводородов. Сточные воды, отходящие от барометрических конденсаторов, сбросы охлаждающей воды из конденсаторов смешения паров, образующихся при охлаждении кокса на установках замедленного коксования и другие, являются источником загрязнения атмосферы сероводородом [9].
1.2.3 Технологические установки
Выброс углеводородов и сероводорода происходит на атмосферно-вакуумных и вакуумных установках НПЗ, на последней ступени паро-эжекторного агрегата неконденсированных газов. При наличии на НПЗ установок каталитического крекинга вакуумного газойля, потери нефти и нефтепродуктов с выжигаемым коксом при регенерации катализатора составляют 5,0—6,5% от перерабатываемого сырья. При мощности завода 12 млн. т/год и выходе вакуумного газойля 10% на нефть они составляют 0,6% от переработанной нефти.
Технологические конденсаты после атмосферных и атмосферно-вакуумных установок и установок каталитического крекинга являются источником загрязнения атмосферного воздуха сероводородом [3].
Пары нефтепродуктов выделяются в атмосферный воздух через неплотности оборудования, арматуры и фланцевых соединений, через сальниковые устройства насосов и компрессоров. Число насосов и компрессоров на НПЗ средней производительности составляет более 1000. Каждая задвижка, фланцевое соединение, предохранительный клапан и сальник насоса — потенциальные источники загрязнения атмосферного воздуха. При нормальной работе от одного насоса выделяется в час 1 кг газов и паров, а от одного компрессора —3 кг. Фактические выделения часто превышают эти цифры в 2—3 раза; для насосной при 20 насосах они могут составлять 20—60 кг/ч, для компрессорной при 5 компрессорах— от 15 до 45 кг/ч.
Выбросы углеводородов в атмосферу на НПЗ через предохранительные клапаны достаточно велики. Например, на НПЗ мощностью 12 млн. т/год через предохранительные клапаны выбрасывается в сутки около 100 т углеводородов. Кроме того, необходимо учитывать выбросы в результате недостаточной герметизации оборудования и арматуры.
Дымовые газы трубчатых печей технологических установок являются источниками выброса в атмосферный воздух сернистого ангидрида, оксидов углерода и азота [6].
Проблема выбросов оксида углерода на установках каталитического крекинга с псевдоожиженным слоем в настоящее время приобрела особое значение. Это связано со значительной коррозией оборудования, (вызванной повышенными температурами в циклонах или в линии отходящих газов в результате дожигания оксида углерода до диоксида в разбавленной фазе катализатора, использованием цеолитных катализаторов, требующих высокой степени выжига кокса повышения температуры регенерации с 620 до 700 °С.Сернокислотная очистка парафина и масел, сульфирование при получении поверхностно-активных веществ и многие другие процессы в нефтеперерабатывающей промышленности связаны с выбросом сернистых газов в атмосферу [9].
1.2.4 Производство битумов
Основным процессом производства битумов является окисление остатков нефтепереработки кислородом воздуха при 240—300°С. Газы, выходящие из окислительного аппарата, состоят из азота, кислорода, диоксида углерода, смеси углеводородов и их кислородных производных, а также водяных паров, образующихся в ходе реакции окисления углеводородного сырья, и за счет воды и водяного пара, подаваемых иногда в газовое пространство окислительного аппарата. Эти выбросы являются одним из основных источников загрязнения воздушного бассейна, связанных с работой НПЗ. Дополнительным и часто значительным источником загрязнения воздушного бассейна могут быть пары органических соединений, выделяющиеся при наливе горячего битума в железнодорожные бункеры и автобитумовозы или розливе его в мелкую тару (бумажные мешки, бочки) для охлаждения.
Состав газов, выделяющихся при обычных режимах окисления в колонне при использовании в качестве сырья гудрона (на примере западно-сибирской нефти) даны в таблице 1.2.4 [2].
Таблица 1.2.4 - Состав газов, выделяющихся при окислении гудрона.
Состав газов, % (масс.) | Производство дорожных битумов | Производство строительных битумов |
азот | 75 | 75 |
кислород | 3 | 9 |
вода | 15 | 10 |
диоксид углерода | 2 | 2 |
органические вещества | 5 | 4 |
Расход воздуха, м3/т битума | 120—180 | 270—370 |
Кроме того, в газах, выходящих из окислительного аппарата, в небольших количествах присутствует оксид углерода (до 0,5% масс); концентрация же сероводорода невелика—не более 0,01% (масс.)—даже при использовании высокосерниcтого сырья; содержание сернистого ангидрида еще ниже. Концентрация 3,4-бенз-пирена в газах достигает 5 мкг/м3 (при ПДК его в воздухе производственных помещений 0,15 ,мкг/м3). В случае подачи в окислительную колонну воды для съема тепла реакции или водяного пара для снижения концентрации кислорода до взрывобезопасной (.ниже 5% об.) необходимо учитывать соответствующее разбавление газов окисления[2].
1.2.5 Факельные системы
Факельные системы являются значительными источниками загрязнения атмосферного воздуха сернистым ангидридом, оксидом углерода и другими вредными газами. На факельные установки направляют горючие и горюче-токсические газы и пары (из технологического оборудования и коммуникаций, а также «сдувки» из предохранительных клапанов и других предохранительных устройств, если эти сбросы невозможно использовать в качестве топлива в специальных печах или котельных установках. Кроме того, на факел направляют горючие и горюче-токсические газы и пары в аварийных случаях, в период пуска оборудования, при остановке оборудования на ремонт и наладке технологического режима (периодические сбросы).
На НПЗ в качестве топлива используют не только поступающий со стороны естественный газ, но и получаемый непосредственно при переработке нефти — высококалорийный, так называемый нефтезаводской сухой газ. Преимущества его по сравнению с жидким топливом заключаются вудобстве обращения и транспортирования, в легком смешении с воздухом и возможности сжигания с малым избытком воздуха.