Световым потоком принято называть мощность лучистой энергии, оцениваемой по световому ощущению, которое она производит на человеческий глаз. За единицу светового потока принят люмен.
Для характеристики поверхностной плотности светового потока, т.е. для количественной оценки освещения поверхности пользуются понятием освещенности – это отношение светового потока падающего на эту поверхность, к ее площади.
Дневной солнечный свет по сравнению с искусственным лучше воспринимается глазом, и более благоприятно влияет на самочувствие человека. Поэтому все помещения здания должны освещаться естественным сетом за исключением тех, где естественный свет противопоказан по технологическим причинам.
В зависимости от расположения светопроемов различают следующие виды естественного освещения:
- боковое – через окна в наружных стенах или через прозрачные части стен;
- верхнее – через световые фонари и проемы в прорытиях;
- комбинированное, когда к верхнему освещению добавляется боковое.
Для регламентации переменного по характеру естественного освещения зданий принята относительная единица измерения выраженная в процентах – коэффициент естественной освещенности (КЕО).
КЕО в какой либо точке внутри помещения, освещаемой светом, видимым через световой проем участка небосвода, представляет собой отношение абсолютно освещенности в этой точке, и одновременной наружной освещенности горизонтальной плоскости, освещаемой (равномерно) рассеянным светом всего небосвода:
Источником искусственного освещения в настоящее время являются: лампы накаливания и газоразрядные лампы низкого и высокого давления.
Лампы накаливания просты по устройству, удобны в эксплуатации, могут быть включены в сеть постоянного и переменного тока и поэтому находят широкое применение для освещения производственных помещений.
В газоразрядных источниках света, создаваемых для целей освещения, широко используется явление фотолюминесценции, основанной на свечении кристаллических порошков – люминофоров – под воздействием ультрафиолетовых излучений.
Основные характеристики ламп световая отдача (отношение излучаемого светового потока к потребляемой энергии), световой поток, средняя продолжительность службы – определяется государственным стандартом.
Искусственное освещение может быть двух систем: общее и комбинированное, когда к общему освещению добавляется местное, концентрирующее световой поток непосредственно на рабочих местах.
Рассчитать необходимую площадь световых проемов производственного помещения.
Тип помещения – литейный цех;
Разряд зрительной работы – IVa;
Административный район – Московская область;
Ориентация световых проемов – СВ, ЮЗ;
Размеры помещения АхВ – 36х18м;
Высота от уровня условной рабочей поверхности до верха окна - h = 4,5м;
Расстояние до расчетной точки – l = 9м;
Рср = 0,50;
Коэффициент запаса – Кз = 1,4;
Вид естественного освещения – боковое двухстороннее.
Расчет необходимой площади световых проемов определим по формуле:
,где Sпр – площадь световых проемов окон;
Sп – площадь пола (Sп = 36х18 = 648 м2);
еN – нормированное значение КЕО:
,mн – коэффициент светового климата (принимается по [1] таблица 3.1 mн=1);
ен – значение КЕО по СНиП 23-05-95* (ен =1,5)
εпр – коэффициент световой активности проема (по [1] таблица 4.1 εпр=11,5);
кз.д. – коэффициент, учитывающий затенение окон противостоящими зданиями (принимается кз.д. =1, считается, что противостоящие здания не затеняют световые проемы);
кз – коэффициент запаса, определяется с учетом запыленности помещения, расположение стекол и периодичности очистки (кз =1,4);
р – коэффициент, учитывающий влияние отраженного света, определяется с учетом геометрических размеров помещения, светопроема и значений коэффициентов отражении стен, потолка, пола ([1] таблица 4,2 р=2,64);
τо – общий коэффициент светопропускания, определяется в зависимости от коэффициента светопропускания стекол, потерь света в переплетах окон, степени из загрязнения наличия несущих и защитных конструкций перед окнами:
,где τ1 – коэффициент светопропускания материала (принимаем τ1=0,8, для стекла оконного листового двойного (при боковом и верхнем освещении));
τ2 – коэффициент, учитывающий потери света в переплетах светопроема (принимаем τ2 =0,6, для двойных раздельных переплетов промышленных зданий (при боковом и верхнем освещении));
τ3 – коэффициент, учитывающий потери света в солнцезащитных устройствах (принимаем τ3=1,0, при боковом освещении);
τ4 – коэффициент, учитывающий потери света в солнцезащитных устройствах (принимаем τ4=1,0, при боковом и верхнем освещении);
τ5 – коэффициент, учитывающий потери света в защитной сетке, устанавливаемой под фонарями (принимаем τ5=1, при боковом освещении).
Рассчитать общее искусственное освещение производственного помещения методом коэффициента использования.
Тип помещения – литейный цех;
Разряд зрительной работы – IVa;
Размеры помещения АхВхH – 36х18х6м;
Кривая силы света – Д-1;
Тип светильника – ЛВП-02;
Коэффициент запаса – Кз = 1,8;
Коэффициент отражения расчетной поверхности – рр = 0,1;
λ = 1,3.
Определим световой поток от ряда светильников по формуле:
,где Ен – нормируемое значение освещенности ( [1] приложение А Ен=200лк);
Кз – коэффициент запаса, зависящий от вида технологического процесса и типа применяемых источников света;
S – освещаемая площадь (S=AxB=36x18=648 м2);
z – коэффициент неравномерности освещенности (для люминесцентных ламп при расположении светильников в виде светящихся линий z = 1,1);
Uoy – коэффициент использования светового потока (определяется из [1] таблицы 4.4 в зависимости от Uoy(тип КСС; рп; рс; рр; iп)=80%);
рп и рс – коэффициенты отражения поверхностей помещения потолка и стен соответственно (из [1] таблицы 4.3 рп =0,5%, рс;=0,5%);
iп – соотношение размеров освещаемого помещения и высота подвеса светильников в нем;
,h – расчетная высота подвеса светильников:
h = H-hc-hp,
Н – общая высота помещения;
hc – свес светильника (принимаем hc=1,5м);
hр – высота рабочей поверхности от уровня пола (принимаем hр=0,8м).
Принимаем по техническим данным [1] таблица 4.5 тип лампы с следующими характеристиками:
Тип лампы – ЛБ 65-1;
Мощность – 65Вт;
Световой поток (Ф1)– 4800 лм.
Определим расстояние между рядами светильников:
.Следовательно, количество рядов вдоль цеха соответственно (36/4,81=7,5), а по ширине (18/4,81=3,7). Следовательно, количество светильников должно быть в интервале от 21 до 32 шт.
Определим количество светильников, с учетом того, что в каждом светильнике используется по 2 лампы:
Следовательно, получаем следующие варианты расположения оборудования:
№ | Количество светильников по длине, шт. | Количество светильников по ширине, шт. | Количество светильников, шт. | Суммарный световой поток, лм. | Отклонение светового потока |
1 | 9 | 3 | 27 | 259 200 | 9,09 |
2 | 8 | 4 | 32 | 307 200 | -7,74 |
Исходя из вышеприведенных вычислений видно, что наиболее предпочтительный вариантом является первый. На рисунке 1 представим схему расположения светильников. На рисунке 2 представим подвес светильника.
Рисунок 1 - Схема расположения светильников в цехе
Рисунок 2 – Подвес светильника
В ходе контрольной работы ознакомились с нормами естественного и искусственного освещения. Для производственного помещения, в частности был рассмотрен прессовочный цех, с размером помещения 36х18х6м рассчитали необходимую площадь световых проемов равной 155,2 м2. А так же подобрали и расположили по цеху необходимое количество светильников (27 шт.) с лампами ЛБ 65.
1. Волосов С.С., Педь Е.И. Приборы для автоматического контроля в машиностроении. Издательство стандартов, М. - 1998
2. Инструкция по определению производственных мощностей. ЦБТИ, М. – 2000
3. Кабаков В.С. Программно-целевое управление использованием основных фондов в машиностроении. «Машиностроение», Ленинград – 1995
4. Маниловский В.Г. Выявление и использование внутрипроизводственных резервов. «Машиностроение», М.-1991
5. Мясников В.А. Программное управление оборудованием. «Машиностроение», Ленинград – 2001
6. Организация и планирование машиностроительного производства, под ред. М.И. Ипатова. «Высшая школа», М. – 1997
7. Приборы для неразрушающего контроля материалов и изделий, 1-й том под ред. В.В. Клюева. «Машиностроение», М.-2003
8. Учебно-методическое пособие для студентов специальности 280102 «Безопасность технологических процессов и производств». Абдрахимов Ю.Р., Шарафутдинова Г.М., Галикеев Р.К..: Уфа, 2007