Смекни!
smekni.com

Оценка чрезвычайных ситуаций и рисков (стр. 3 из 4)

Постоянно проживающее в непосредственной близости от источников промышленных выбросов население было выбрано в качестве исследуемой экспонируемой популяции. В соответствии с целями данного исследования, город был условно разделен на 99 участков (округов), совпадающих с городскими избирательными участками.

На основании данных о концентрациях выбросов на разных участках территории города, соотнесенных с размером и плотностью популяции (детского и взрослого, мужского и женского населения) была создана электронная карта Череповца.

· Этап 3. Идентификации опасности и установление "доза-ответных" зависимостей

Целью этого этапа стала оценка доступных доказательств того, что загрязняющие вещества оказывают отрицательное воздействие на население.

Риски для здоровья рассчитывались по стандартной методологии оценки канцерогенного и неканцерогенного риска, с использованием информации "доза-ответ" для основных загрязнителей (РМ10, SO2, NО2, CО, озон, свинец). Для оценки риска, связанного с загрязнением воздуха, применялись показатели токсичности, относящиеся к ингаляционному пути поступления поллютантов. Использовались данные о зависимости "доза-ответ" для стандартных загрязнителей, принятых в США, которые сравнивались с российскими ПДК этих же загрязнителей по классам опасности.

Токсикологическая и другая информация была получена из официальных российских и международных источников о загрязнителях, содержащихся в соответствующих выбросах и представлена по каждому показателю в электронном формате. Кроме того, фиксировалась информация о каждом загрязнителе, для которого были подсчитаны новые токсикологические величины.

В результате была получена информация о токсичности каждого из 17 веществ в каждой из ИГ.

· Этап 4. Характеристика риска

Характеристика риска представляет собой финальную стадию процесса оценки риска. На этой стадии результаты оценки экспозиции, опасности и характеристик "доза-ответ" переводятся в количественные и качественные показатели риска.

Процедура характеристики риска по каждому из ЗВ включала обработку данных о степени токсичности, концентрации, времени экспозиции и сведения о численности населения, подвергающегося воздействию конкретного ЗВ. Оценивался риск раковых и нераковых эффектов в каждой из 99 выделенных групп населения.

Глава 2

При анализе безопасности технической системы, характеристики ее надежности не дают исчерпывающей информации. Необходимо провести анализ возможных последствий отказов технической системы в смысле ущерба, наносимого оборудованию и последствий для людей, находящихся вблизи него. Таким образом, расширение анализа надежности, включение в него рассмотрения последствий, ожидаемую частоту их появления, а также ущерб, вызываемый потерями оборудования и человеческими жертвами, и является оценкой риска. Конечным результатом изучения степени риска может быть, например, такое утверждение: “Возможное число человеческих жертв в течение года в результате отказа равно N человек”.

Таким образом, можно дать следующее определение риска: риск - частота реализации опасностей. Количественная оценка риска - это отношение числа тех или иных неблагоприятных последствий к их возможному числу за определенный период.

Пример. Определить риск гибели человека на производстве за год, если известно, что ежегодно погибает около n =14000 человек, а численность работающих составляет N =140 млн. человек:

С точки зрения общества в целом интересно сравнение полученной величины со степенью риска обычных условий человеческой жизни, для того чтобы получить представление приемлемом уровне риска и иметь основу для принятия соответствующих решений.

По данным американских ученых индивидуальный риск гибели по различным причинам, по отношению ко всему населению США за год составляет:

Автомобильный транспорт 0,0003

Падение 0,00009

Пожар и ожог 0,00004

Утопление 0,00003

Отравление 0,00002

Огнестрельное оружие и станочное оборудование 0,00001

Водный, воздушный транспорт 0,000009

Падающие предметы, эл. ток 0,000006

Железная дорога 0,000004

Молния 0,0000005

Ураган, торнадо 0,0000004

Таким образом, полная безопасность не может быть гарантирована никому, независимо от образа жизни.

При уменьшении риска ниже уровня 0,000001в год общественность не выражает чрезмерной озабоченности и поэтому редко предпринимаются специальные меры для снижения степени риска (мы не проводим свою жизнь в страхе погибнуть от удара молнии). Основываясь на этой предпосылке, многие специалисты принимают величину 1 10-6 как тот уровень, к которому следует стремиться, устанавливая степень риска для технических объектов. Во многих странах эта величина закреплена в законодательном порядке. Пренебрежимо малым считается риск 1х10-8 в год.

Необходимо отметить, что оценку риска тех или иных событий можно производить только при наличии достаточного количества статистических данных. В противном случае данные будут не точны, так как здесь идет речь о так называемых “редких явлениях”, к которым классический вероятностный подход не применим. “Так, например, до чернобыльской аварии риск гибели в результате аварии на атомной электростанции оценивался в 2х10-10 в год”.

Анализ риска позволяет выявить наиболее опасные деятельности человека. По данным американских ученых частота несчастных случаев со смертельным исходом составляет (по времени суток) (рис.1). Таким образом, должны рассматриваться все технические и социальные аспекты в их взаимосвязи. При этом возможно обеспечить приемлемый риск, который сочетает в себе технические, экономические, социальные и политические аспекты и представляет собой некоторый компромисс между уровнем безопасности и возможностями ее достижения. Упрощенный пример определения приемлемого риска можно проиллюстрировать графиком (рис.2)

Затрачивая чрезмерные средства на повышение надежности технических систем, можно нанести ущерб социальной сфере. Величина приемлемого риска определяется уровнем развития общества и темпами научно - технического прогресса.

Начальный импульс к созданию численных методов оценки надежности был дан авиационной промышленностью. После первой мировой войны в связи с увеличением интенсивности полетов и авиакатастроф были выработаны критерии надежности для самолетов и требования к уровню безопасности. В частности, проведен сравнительный анализ одномоторных и многомоторных самолетов с точки зрения успешного завершения полета и выработаны требования по частоте аварий, отнесенных к 1ч. полетного времени. К 1960г., например, было установлено, что одна катастрофа приходится в среднем на 1млн. посадок. Таким образом, для автоматических систем посадки самолетов можно было бы установить требования по уровню риска, не превышающего одной катастрофы на 10 107 посадок.

Дальнейшее развитие математического аппарата надежности применительно к сложным системам последовательного типа показало невозможность применения старого закона “цепь не прочнее, чем самое слабое ее звено”. Был получен закон произведения для последовательных элементов:


Таким образом, в системе последовательного типа надежность отдельных элементов должна быть значительно выше для удовлетворительного функционирования системы.

В 40-е годы увеличение надежности шло по пути улучшения конструкционных материалов, повышения точности и качества изготовления и сборки изделий. Большое внимание уделялось техническому обслуживанию и ремонту оборудования (до тех пор, пока министерство обороны США не обнаружило, что годовая стоимость обслуживания оборудования составляет 2$ на каждый 1$ его стоимости; т.е. при 10-летнем сроке его эксплуатации необходимо 20млн.$ на содержание оборудования стоимостью 1млн.$).

В дальнейшем от анализа надежности технических систем начали переходить к оценке риска, включив в анализ ошибочные действия оператора. Сильный толчок развитию теории надежности дала военная техника - требование поражения цели “с одного выстрела”.

Развитие космонавтики и ядерной энергетики, усложнение авиационной техники привело к тому, что изучение безопасности систем было выделено в независимую отдельную область деятельности. В 1969г. МО США приняло стандарт MIL - STD - 882 “Программа по обеспечению надежности систем, подсистем и оборудования”: Требования в качестве основного стандарта для всех промышленных подрядчиков по военным программам. А параллельно МО разработало требования по надежности, работоспособности и ремонтопригодности промышленных изделий.