Смекни!
smekni.com

Радиационная безопасность при эксплуатации и ремонте оборудования Курской АЭС (стр. 16 из 18)


Приложение Г. Источники ионизирующих излучений на Курской АЭС

1 Основными источниками радиационной опасности на Курской АЭС являются:

- реактор;

- бассейны выдержки;

- отработавшее топливо;

- трубопроводы и оборудование КМПЦ (насосы ГЦН, барабан-сепараторы, задвижки и т.д.);

- аппараты системы спецводоочистки и ее оборудование;

- хранилище жидких и твердых отходов;

- воздуховоды и оборудование спецвентсистем;

- детали и механизмы СУЗ, датчики КИП и РК, связанные с измерением параметров воды КМПЦ;

- оборудование газового контура и УПАК.

2 Процесс получения электроэнергии на АС основан на использовании ядерного топлива (уран-235, плутоний-239), при делении которого в реакторах более 80% освобождающейся энергии выделяется в виде кинетической энергии осколков деления и 20% - в виде энергии нейтрино и ионизирующих излучений: нейтронов, гамма-квантов, бета-частиц.

Энергия, высвобождающаяся при делении одного ядра урана-235, равна 200 МэВ или 3,2*10-11 Дж, а при делении 1 г - 8,2*1010 Дж, что эквивалентно 2,0*104 кВт*час.

Процесс деления сопровождается образованием новых радиоактивных веществ - осколков деления, а освобождающиеся нейтроны производят активацию ядер теплоносителя, продуктов коррозии, газов и конструкционных материалов.

3 Основными источниками нейтронов являются работающие реакторы, в активной зоне которых достигаются потоки нейтронов 1013-1014 нейтронов/(см2*с).

Замедление быстрых нейтронов до тепловых происходит в основном в замедлителе, а также в отражателе и биологической защите.

При делении одного ядра урана-235 образуется 2 или 3 нейтрона.

Средняя энергия нейтронов деления равна 2 МэВ, максимальная-17 МэВ.

При работе реакторов потоки нейтронов могут наблюдаться в центральных залах и прилежащих к реактору помещениях.

4 При работе реакторов образуются гамма-кванты с энергиями от 0,1 до 10 МэВ в результате следующих процессов:

а) при делении ядер урана-235 и плутония-239 возникает мгновенное гамма-излучение с энергией от 0,2 до 7 МэВ;

б) при радиационном захвате тепловых нейтронов ядрами нуклидов конструкционных материалов происходят ядерные реакции с испусканием гамма-квантов, в результате которых образуются новые радиоактивные ядра. Гамма-кванты, возникающие в результате радиационного захвата, имеют энергию до 10 МэВ. Так, например, энергия захватных гамма-квантов железа достигает 7-10 МэВ, хрома - 9 МэВ, никеля - 9 МэВ, титана - 6,7 МэВ, алюминия - 7,7 МэВ, меди - 7,8 МэВ, цинка - 9 МэВ, натрия - 6,4 МэВ;

в) в активной зоне реактора происходит взаимодействие нейтронов с ядрами теплоносителя, продуктов коррозии, газов и конструкционных материалов по реакциям (n,гамма), (n,р), (n,альфа), (n,2n) и др.

Радиоизотопы, образующиеся при этих реакциях, обладают периодами полураспада от нескольких секунд до нескольких лет. Активность, обусловленная продуктами активации, называется наведенной.

Активность остановленного оборудования определяется гамма-излучением активированных примесей и продуктов коррозии металлов, которые отложились на поверхностях оборудования, арматуры и трубопроводов в процессе эксплуатации. Это обычно кобальт-60, кобальт-58, железо-58, марганец-54, хром-51, цинк-65 и другие. Накопление продуктов коррозии приводит к возрастанию мощностей доз гамма-излучения в рабочих помещениях.

Эффективное снижение уровней гамма-излучения в рабочих помещениях дает внутриконтурная дезактивация оборудования и трубопроводов.

Основные долгоживущие радиоизотопы приведены в таблице Г.1.

Таблица Г.1 – Радиоизотопы - продукты коррозии

Изотопы Период полураспада Энергия излучения, МэВ
b-частицы (max энергия) g-квант
Хром-51 27,8 дня 0,32
Марганец-54 291 день 0,84
Марганец-56 2,58 часа 0,71,052,86 0,841,812,12
Железо-59 45 дней 0,270,46 1,11,29
Кобальт-58 71,3 дня 0,48 0,510,81
Кобальт-60 5,24 года 0,41 1,171,33
Цинк-65 235 дней 0,325 1,12
Медь-64 12,8 часа 0,0656 1,34
Цирконий-95 65 дней 0,360,4 0,72
Ниобий-95 35 дней 0,16 0,77

5 Источниками бета-излучения являются детали, извлекаемые из реакторов, технологическое оборудование, контурные и дренажные воды, радиоактивные газы и аэрозоли.

Наибольшую опасность за счет активации материала представляют детали, находящиеся в реакторах при работе на мощности. Эти детали при извлечении из реактора имеют сравнительно небольшую гамма-активность, но создают большие потоки бета-частиц. При контакте с извлеченными из реактора предметами могут произойти радиационные ожоги рук и тела. Радиационные ожоги вызывают также растворы с концентрацией осколочной активности 3,7*1010Бк/л и выше.

6 Источниками радиоактивных газов являются реакторы, вода КМПЦ, межреакторное пространство, газовые и маслосистемы оборудования КМПЦ, система охлаждения биологической защиты реактора.

Газовая активность обусловлена аргоном-41 и газообразными продуктами деления: изотопами ксенона и криптона, а также изотопами йода в парообразном состоянии. Аргон-41 образуется в активной зоне реактора по реакции Ar-40 (p,n) из стабильного Ar-40.

Небольшой период полураспада аргона-41 Т1/2 = 1,82 часа (энергия гамма-кванта и бета-частиц равна 1,3 Мэв и 1,18 Мэв соответственно) облегчает условия ремонта оборудования газовых контуров после останова реактора.

Поступление радиоактивных газов в производственные помещения происходит через газовые уплотнения реакторов, при разгерметизации газовых контуров, боксов и оборудования.

7 Гамма-излучение продуктов деления урана-235 представляет наибольшую опасность для персонала из-за их высокой активности.

Активность облученного топлива за счет продуктов деления после извлечения его из реактора может составлять несколько десятков тысяч и даже сотен тысяч кюри.

При разгерметизации ТВЭЛов в теплоноситель поступают летучие и твердые продукты деления, так как при длительной работе реакторов на номинальной мощности давление радиоактивных газов в ТВЭЛах достигает несколько десятков кг/см2. Осколки деления могут дать существенный вклад в остаточную активность воды КМПЦ.

Аварийные ситуации с ядерным топливом приводят к резкому увеличению мощностей доз гамма-излучения в помещениях газовых контуров, а также к увеличению газовой активности в приреакторных помещениях, в вытяжных вентсистемах и венттрубах.

Во время работ по извлечению технологических каналов с разгерметизированными ТВЭЛами графитовых реакторов может произойти загрязнение графитовой кладки, дренажных систем и верхней плиты ядерным топливом и твердыми продуктами деления.

Основные наиболее распространенные радиоизотопы, образующиеся при делении, приведены в таблице Г.2.

Таблица Г.2 – Радиоизотопы - продукты деления

Изотопы Период полураспада Энергия излучения, МэВ
b-частицы (max энергия) g-квант
Газообразные
Криптон-85М 4,4 часа 0,522,7 0,150,305
Криптон-87 78 мин. 1,33,33,85 0,40,852,16
Криптон-88 2,77 часа 0,520,92,7 0,362,4
Ксенон-133 5,27 дня 0,35 0,081
Ксенон-135 9,24 часа 0,91 0,25
Ксенон-138 17 мин. 2,4 0,42
Аэрозольные
Рубидий-88 18 мин 3,35,2 1,834,87
Цезий-138 32 мин. 2,02,93,4 0,461,011,43
Йод-131 8,08 дня 0,61 0,364
Йод-133 20,5 часа 1,85 0,53
Твердые
Стронций-89 51 день 1,46 0,915
Стронций-90 28 лет 0,53
Иттрий-90 64,5 часа 0,26
Цирконий-95 65 дней 0,360,4 0,72
Ниобий-95 35 дней 0,16 0,77
Рутений-108 40 дней 0,22 0,22
Рутений-106 1 год 0,04 0,510,02
Цезий-137 30 лет 0,52 0,66
Барий-140 12,8 дня 0,41,0 0,080,54
Лантан-140 40,2 часа 1,361,662,15 1,60,810,49

Такие газообразные изотопы, как криптон-88 (Т1/2 = 2,77 часа) и ксенон-138 (Т1/2 = 17 мин) при распаде генерируют аэрозольные частицы рубидий-88 и цезий-138 соответственно, которые при осаждении дают значительные по величине загрязнения поверхностей помещений, оборудования и спецодежды.

Источниками радиоактивных аэрозолей и поверхностных загрязнений являются технологическое оборудование при нарушении его герметичности (протечки, свищи) или при разборке, фильтры вытяжных вентсистем, извлекаемые из реактора предметы, радиоактивные отходы, газообразные продукты деления.

Радиоактивные аэрозоли и загрязнения обусловлены изотопами, образующимися при делении ядер урана-235 и при активации продуктов коррозии.

Уровни радиоактивных загрязнений и концентрации радиоактивных аэрозолей значительно повышаются при проведении ремонтных и аварийных работ.

8 При работе станции появляются жидкие, твердые и газообразные радиоактивные отходы.

Жидкими радиоактивными отходами являются вода, применяемая в качестве теплоносителя и для охлаждения оборудования, растворы, образующиеся после дезактивации оборудования и помещений, и обмывочные воды. Все воды, содержащие в растворенном виде или в виде взвесей радиоактивные вещества, поступают на спецводоочистку на переработку. Пульпа и кубовый остаток направляются в емкости хранилища жидких отходов на хранение, а конденсат - в главный корпус на подпитку контуров и обмывку помещений. Часть дебалансных вод после соответствующей проверки направляется в хозяйственно-фекальную канализацию.