Смекни!
smekni.com

Природа, источники, механизм взаимодействия с веществом, особенности воздействия на организм человека нейтронного излучения (стр. 2 из 3)

Бетон является основным материалом для защиты от излучений, если масса и размер защиты не ограничиваются другими условиями. Бетон, применяющийся для защиты от излучений, состоит из заполнителей, связанных между собой цементом. В состав цемента в основном входят окислы кальция, кремния, алюминия, железа и легкие ядра, которые интенсивно поглощают γ-излучение и замедляют быстрые нейтроны в результате упругого и неупругого столкновений. Ослабление плотности потока нейтронов в бетоне зависит от содержания воды в материале защиты, которое определяется в основном типом используемого бетона. Поглощение нейтронов бетонной защитой может быть значительно увеличено введением соединения бора в состав материала защиты. Конструкция бетонной защиты может быть монолитной (для больших реакторов) или состоять из отдельных блоков (небольших реакторов).

1.4Дозиметрия нейтронного излучения

Процессы взаимодействия нейтронов с веществом определяются энергией нейтронов и атомным составом поглощающей среды. Для регистрации нейтронов используют различные виды вторичных излучений, возникающих в результате ядерных реакций или рассеяния нейтронов на ядрах с передачей им энергии. Тепловые и надтепловые нейтроны регистрируют с использованием реакций 10В(n, α)7Li, 6Li(n, α)3Н, 3Не(n, р)3Н, а также деления тяжелых ядер 235U и 239Pu.

Пропорциональные счетчики. Если реакция с бором происходит внутри пропорционального счетчика, то результирующие ядра 4He и 7Li, разлетающиеся с энергией соответственно 1,6 и 0,9 МэВ, могут быть легко зарегистрированы. Обычно нейтронные пропорциональные счетчики имеют достаточно толстые стенки, счетчики могут заполняться газом BF3, в котором 10B входит в молекулу. Тонкий слой твердого вещества B4C может наноситься на внутреннюю поверхность стенки счетчика(в этом случае в ионизации участвует только одна из частиц, так как другая поглощается стенкой). Поэтому камеры с газовым заполнением BF3 более эффективны, чем камеры с твердым слоем B4C.Отметим, что вероятность захвата быстрых нейтронов ядром 10B очень мала. Только тепловые нейтроны захватываются с высокой вероятностью. С другой стороны быстрые нейтроны становятся тепловыми при замедлении. Детектор тепловых нейтронов можно превратить в детектор быстрых, окружив его слоем замедлителя нейтронов, веществом с большим содержанием водорода (например, парафин). Такие"всеволновые" детекторы выполняются из 2— 3 водородсодержащих коаксиальных цилиндрических слоев с внутренним расположением борного счетчика или из нескольких полиэтиленовых шаров различных диаметров — замедлителей, надеваемых на детектор так, чтобы он находился в центре шара.

Рис5 Всеволновой счетчик

Конструкция всеволнового счетчика, который может регистрировать нейтроны в диапазоне от 0,1 до 5 МэВ с постоянной эффективностью, показана на рис5. Счетчик состоит из двух цилиндрических парафиновых блоков (1), вставленных один в другой (диаметр 380 и 200 мм, длина 500 и 350 мм соответственно), между которыми находится экран (2), состоящий из слоя B2O3. Экран и внешний цилиндрический парафиновый блок предназначены для уменьшения чувствительности всеволнового счетчика к рассеянным нейтронам, поступающим не с правого торца счетчика. Внутри парафиновых блоков устанавливают пропорциональный борный счетчик (4), который с правого торца закрывается кадмиевым колпачком (5) для экранировки от прямого пучка тепловых нейтронов. Для увеличения эффективности регистрации медленных нейтронов в торцевой части парафина по окружности высверлено несколько отверстий (3). Быстрые нейтроны проникают в парафин, где они замедляются и регистрируются счетчиком. При плотности потока нейтронов1 нейгр /(см2·с) скорость счета всеволнового счетчика достигает 200отсч /мин Эффективность борного счетчика h, зависящую от длины рабочего объема l, энергиинейтронов Enи давления газа p, можно определить по формуле:

η = 1 - ехр(-0,07 рl/En1/2) (4)

При p = 0,1 МПа, l = 20см, En= 0,0253 эВ, η = 0,9

Камеры деления. Для регистрации нейтронов любых энергий можно использовать деление тяжелых ядер в камерах деления, например 235U и 239Pu. Сечения деления для них изменяются незначительно в большом диапазоне энергий нейтронов и имеют наибольшие значения по сравнению с сечениями деления для других радионуклидов. Во избежание самопоглощения продуктов деления, делящееся вещество наносится тонким слоем (0,02 — 2 мг/см2) на электроды ионизационной камеры, заполненной аргоном(0,5 — 1,0 МПа).

Рис. 6. Камера деления с высокой эффективностью.

По сравнению с борными счетчиками камеры деления более долговечны и могут работать при высокой температуре. Эффективность камер деления с 235U равна 0,6%, те значительно ниже, чем для борных счетчиков. Для увеличения чувствительности камер деления к нейтронному излучению необходимо увеличить поверхность электродов камеры. Камера деления с высокой эффективностью имеющая четыре концентрических алюминиевых электрода показана на рис6.

Сцинтилляционные счетчики. Для регистрации быстрых нейтронов широко используют сцинтилляционные счетчики со специальными сцинтилляторами. Быстрые нейтроны при упругом рассеянии на ядрах водорода передают им большую часть своей энергии которая тратится на ионизацию водородсодержащей среды. Поэтому органические сцинтилляторы, содержащие большое количество атомов водорода(например стильбен), обладают высокой эффективностью регистрации быстрых нейтронов.

Рис. 7. Сцинтилляционный счетчик нейтронов с шаровым замедлителем.

Для измерения потока нейтронов в интервале энергий от 10-2 до 107 эВ можно применить сцинтилляционный детектор (рис. 7), который состоит из ФЭУ(4) с экраном(5), предусилителя (6), световода (3), сцинтиллятора 6LiI(Eu) (2) со сменными полиэтиленовыми шаровыми замедлителями (1).

Трековые дозиметрические детекторы. В дозиметрии нейтронного излучения нашли применение твердотельные трековые детекторы в чувствительном объеме которых регистрируется число треков заряженных частиц. Дозиметрическое применение этих детекторов основано на связи числа треков с дозой излучения.

Активационный метод дозиметрии нейтронов В результате ядерныхреакций,протекающих под действием нейтронов, образовываются радиоактивные ядра При использовании активационного метода измеряют наведенную активность детектора А, равную

(5)

где λ — постоянная распада образующихся радиоактивных ядер;

Nt—число радиоактивных ядер в единице объема детектора при его облучении в течение времени t;

n— число ядер нуклида мишени в единице объема;

φ(E).dE — плотность потока нейтронов, имеющих энергию в интервале от E до E+dE;

σ(Ε) — сечение активации для нейтронов с энергией E в веществе детектора. Пределы интегрирования E1 и E2 соответствуют нижней и верхней границам энергии в спектре нейтронов.

Детекторы нейтронов прямой зарядки. Для измерения плотности потока нейтронов в активной зоне реактора применяются детекторы нейтронов прямой зарядки(ДПЗ). Эти детекторы основаны на первичных эффектах: захвате нейтронов и β-распаде(захват нейтронов сопровождается мгновенным испусканием γ-излучения и эмиссией из возбужденных ядер высокоэнергетических электронов); выходе электроновотдачи и фотоэлектронов при поглощении внешнего γ-излучения.

Индивидуальные дозиметры нейтронов.

В качестве примера приведём индивидуальный аварийный дозиметр.Для определения доз при аварийных облучениях персонала, обслуживающего ядерные реакторы, критические сборки и другие системы, где имеется вероятность непредвиденных превышений критической массы, разработаны термолюминесцентные итрековые детекторы нейтронов, входящие в комплект индивидуальных аварийных дозиметров ГНЕЙС, рис 8.

Рис 8 Конструкция аварийного дозиметра β-, γ- и нейтронного излучения ГНЕЙС

1 — бета-дозиметр, 2 — крышка кассеты индивидуального дозиметра ГНЕЙС, 3 — булавка, 4 — целлулоид, 5 — фотография с инициалами и фамилией, 6—дозиметр промежуточных и быстрых нейтронов, 7 — дозиметры γ~излучения, 8 — дозиметры тепловых нейтронов, 9 — корпус кассеты индивидуального дозиметра ГНЕЙС.

1.5 Влияние нейтронного излучения на организм человека

Внешнее облучениевсего тела, с учетом его вклада в индивидуальные и коллективныедозы является основным на АЭС. Его источники: это γ-излучение ядерного реактора,технологических контуров, оборудования с радиоактивными средами и любые поверхности,загрязненные радиоактивными веществами. Существенно меньший вклад во внешнееоблучение персонала АЭС вносят нейтронное и β-излучение. Человек в процессе своей жизни подвергается облучению как от естественных (природных), так и от искусственных (созданных человеком в результате его деятельности) источников ионизирующих излучений. Из искусственных источников радиации наибольшее значение имеет облучение в процессемедицинских процедур (рентгенодиагностика, рентгено- и радиотерапия). Средняяиндивидуальная доза за счет этого источника составляет около 1,4 мЗв в год. Облучениенаселения за счет глобальных радиоактивных выпадений, после прекращения ядерныхиспытаний в атмосфере в 1963 г. стали уменьшаться, и годовые дозы составили 7% дозы отестественных источников в 1966 г., 2% в 1969 г., 1 % в начале 80-х годов. Следует отметить,что телезритель у цветного телевизора получает среднюю годовую дозу около 0,25 мЗв, чтосоставляет 25% естественного фона.