Первый тип повреждений наиболее распространен. Повреждения низовых призм, в которых поровая вода либо отсутствует, либо имеет весьма низко расположенную кривую депрессии, всегда происходят по первому типу, независимо от крупности слагающих призму материалов. К этому же типу относятся повреждения верховых призм, если они сложены в пределах активной зоны крупнообломочным материалом, или имеют верховой экран и неводонасыщены.
Повреждения второго типа (до полного разрушения) более редки и имеют место только в верховых откосах, если они сложены мелкозернистым водонасыщенным материалом, при потере устойчивости структуры которого явление разжижения возникает.
Обрушение или оползание откосов, как правило, начинается с образования продольных трещин, с появлением которых сопротивление сдвигу боковых призм снижается. Наиболее типичными примерами повреждений плотин из грунтовых материалов из практики последних лет являются повреждения земляной плотины Чир-Юртской ГЭС (быв. СССР) высотою 37,5 м, спроектированной на 7 баллов по действовавшим тогда СН – 8 – 57 (8-ми балльное землетрясение 14 мая 1970 г.);
повреждения плотины Лоуэр Сан-Фернандо (США) высотою 43 м с проверенной расчетом сейсмостойкости (землетрясение 9 февраля 1971 г.).
Следует заметить, что каменно-набросные и каменно-земляные плотины обладают значительно более высокой сейсмостойкостью, чем земляные. Большие плотины этих типов более чем в 25 случаях испытали сильные землетрясения (8-9 баллов по шкале ММ) и ни одна из них не получила существенных повреждений, хотя незначительные в ряде случаев наблюдались.
Также, во многих источниках отмечается, что плотины из грунтовых материалов на нескальных основаниях обладают меньшей сейсмостойкостью, чем возведенные на скальных. Сильных повреждений в результате землетрясений земляные плотины на скальных основаниях обычно не получают, тогда как случаи значительных повреждений плотин, построенных на мягких грунтах, многочисленны (в виду большой деформируемости нескального основания).
Особым видом повреждений плотин из грунтовых материалов является разрушение водопропускных устройств. Примером аварии, связанной с разрушением этого вида, является авария на плотине Тарбела высотой 145 м (Пакистан, 7-ми балльное землетрясение).
Кроме повреждений, отмеченных выше, имеются другие примеры разрушений, встречающихся при землетрясениях менее часто:
· осадки оснований из оттаявших грунтов, например, крупное землетрясение в мае 1964 г. вызвало оседание незамерзающих ледниковых отложений, составляющих подстилающий слой плиты водослива земляной плотины Эклуфа (США), в результате под этой частью плотины образовалась каверна;
· разрушение плотин после образования трещин и последующего быстрого размыва тела плотины; такие разрушения, например, имели место в плотинах Колеман, Роджерс, Болдуин Хилз.
4.3 Повреждения бетонных плотин
Воздействие землетрясений различной интенсивности испытали более 100 плотин и гидротехнических сооружений из бетона. Известны лишь 15 случаев повреждений этих сооружений, причем более половины из них получили повреждения в виде трещин. Повреждения бетонных плотин наблюдаются лишь от землетрясений интенсивностью 7 баллов и более. Несколько водопропускных сооружений, небольшие плотины из каменной кладки, располагающиеся на мягких грунтах, были полностью разрушены сильными землетрясениями.
В общем случае наибольшей повреждаемостью обладают низкие сооружения высотой до 20 м, а также контрфорсные плотины (три из восьми были повреждены). Наиболее сейсмостойкими оказались бетонные гравитационные и арочные плотины, испытавшие сильные землетрясения интенсивностью 8-9 баллов, но не получившие значительных повреждений.
В ряде случаев землетрясения были вызваны заполнением водохранилищ (возбужденная сейсмичность), например, контрофорсная плотина Хсинфенгкьнг (КНР) – землетрясение с магнитудой 6,1.
Наиболее сильные повреждения среди высоких плотин были получены плотиной Койна (Индия), испытавшей воздействие ряда землетрясений при наполнении водохранилища.
Повреждения разделяются в основном по следующим видам:
· видимые трещины (через трещины на различных уровнях плотины происходит сильная фильтрация);
· повреждения и разрушения устройств (трещины на водосливе, башне, деформационных швах и др.);
· местные выкрашивания и дробление бетона. [16, с. 5-21]
4.4 Плотины, испытавшие сейсмическое воздействие
Самые крупные и известные плотины, испытавшие сейсмическое воздействие, а некоторые и являющиеся причиной землетрясения, можно представить в таблице 4.4.1.[16, 17]:
Таблица 4.4.1.
Название плотины, страна | Объем водохранилища, куб. км | Высота (макс. глубина), м |
Койна, Индия | 2,78 | 103 |
Кариба, Замбия | 175 | 128 |
Кремаста, Греция | 4,75 | 120 |
Мид, США | 35 | 142 |
Талбинго, Австралия | 0,935 | 162 |
Хендрик - Фервурд, Южная Африка | 5 | 66 |
Вайонт, Италия | 150 млн. куб. м | 266 |
Монтэнар, Франция | 275 млн. куб. м | 130 |
Гран-Валь, Франция | 292 млн. куб. м | 78 |
Нурекская ГЭС, СССР | 11 | 250 (300) |
Куробе, Япония | 149 млн. куб. м | 180 |
Уэд-Фодда, Алжир | 225 млн. куб. м | 89 |
Бенмор, Нов. Зеландия | 2,04 | 96 |
4.5 Сейсмостойкость гидротехнических сооружений
В вопросе сейсмостойкости особое внимание следует уделять плотинам. Это объясняется следующими причинами:
особой важностью плотин, являющихся главнейшим средством управления реками, аккумуляции водной энергии, а также направления воды для целей водоснабжения, орошения и обводнения;
большим объемом материальных и денежных затрат на постройку плотины;
громадной ответственностью такого сооружения, поскольку его разрушение может принести ущерб ниже расположенным населенным пунктам, промышленным предприятиям и сельскохозяйственным угодьям.
Кроме того, опыт разрушительных землетрясений показал, что сооружения типа плотин, построенные без учета сейсмического фактора, нередко подвергались частичному или полному разрушению.
Основные принципы сейсмостойкого строительства.
При землетрясении частицы грунта движутся в пространстве по сложной траектории и в сооружении возникают инерционные силы, величина и направление действия которых резко меняются во времени. По той же причине деформации сооружения и его элементов могут носить сложный характер. В самом деле, при указанных условиях сооружение может претерпевать совокупность деформаций осевого растяжения, сжатия, изгиба, сдвига и кручения. Помимо этого, соответствующие усилия действуют динамически, т.е. возникают толчкообразные и колебательные движения сооружения в целом и его элементов.
Анализ данных о поведении зданий и сооружений при разрушительных землетрясениях указывает на целесообразность соблюдения ряда принципов сейсмостойкого строительства.
Ввиду динамического характера сейсмического воздействия (внезапное приложение усилий и знакопеременность действия их при колебаниях сооружения) рекомендуется возводить сооружения из достаточно прочных и монолитных материалов. С целью демпфирования сейсмических толчков отдается предпочтение материалам, которые, кроме того, в той или иной степени обладают пластическими свойствами. Для уменьшения сейсмических инерционных нагрузок рекомендуется применять материалы с малым объемным весом.
Большое значение имеет также однородность материала, т.к. в местах контактов материалов, обладающих различными физико-механическими свойствами, или в местах нарушения сплошности материала происходит расслоение тела сооружения при сейсмических воздействиях.
Поскольку сооружение и его элементы, в том числе всякие выступы сооружения в плане, плохо сопротивляться крутящим усилиям, следует стремиться проектировать сооружение так, чтобы массы в нем были распределены симметрично относительно центра тяжести всего сооружения, что практически в известной мере достигается упрощением формы сооружения в плане (приближением к форме квадрата). Если достигнуть этого трудно, то рекомендуется разбивать сооружение на отдельные отсеки, имеющие указанное выше простейшее очертание в плане.
Всякие горизонтальные усилия, в том числе сейсмические, распределяются между отдельными несущими элементами сооружения или здания (опоры моста, контрфорсы в железобетонных плотинах, поперечные стены и простенки каменных зданий и т.п.) пропорционально их жесткости. Следовательно, во избежание перегрузки отдельных элементов сооружения необходимо проектировать его так, чтобы в отношении жесткости его элементы не отличались резко друг от друга.
Всякое сооружение представляет собой пространственную систему, часто состоящую из связанных между собой более простых несущих элементов. Поэтому для обеспечения сохранности сооружения при землетрясении важно обеспечить прочность связей, например, сопряжений между капитальными стенами каменного здания. Кроме того, следует стремиться к тому, чтобы связи для смягчения динамического воздействия землетрясения обладали пластическими свойствами.
В соответствии с указанными принципами целесообразно при проектировании и разработке технологии строительного производства предусматривать ряд антисейсмических мероприятий.
Необходимая прочность и монолитность материала, например, каменной кладки, достигается применением прочных камней правильной формы, при тщательном соблюдении правил перевозки, с использованием растворов, обладающих хорошим сопротивлением нормальному и тангенциальному воздействиям. Предусматривают меры против образования в швах кладки усадочных трещин, для придания раствору пластичности в него вводят специальные добавки.